Volume 47 Issue 2
Feb.  2021
Turn off MathJax
Article Contents
WU Jiang, CHEN Enmin, GAO Yijie, et al. Design of underwater-launched controller for small rotor UAV[J]. Journal of Beijing University of Aeronautics and Astronautics, 2021, 47(2): 213-222. doi: 10.13700/j.bh.1001-5965.2020.0281(in Chinese)
Citation: WU Jiang, CHEN Enmin, GAO Yijie, et al. Design of underwater-launched controller for small rotor UAV[J]. Journal of Beijing University of Aeronautics and Astronautics, 2021, 47(2): 213-222. doi: 10.13700/j.bh.1001-5965.2020.0281(in Chinese)

Design of underwater-launched controller for small rotor UAV

doi: 10.13700/j.bh.1001-5965.2020.0281
More Information
  • Corresponding author: XIA Jie. E-mail: xiaj@buaa.edu.cn
  • Received Date: 18 Jun 2020
  • Accepted Date: 17 Jul 2020
  • Publish Date: 20 Feb 2021
  • The attitude stability of the underwater-launched small rotor UAV directly affects the result of the entire submarine launch task. Aimed at the problems that the rotor UAV's attitude is difficult to adjust quickly during the launching period, and the initial launch attitude is easily interfered by ocean waves, a novel control scheme for the UAV underwater-launched system is proposed. Meanwhile, this paper specifically uses a booster rocket with a vector control engine to adjust the attitude of the UAV in the launch period, and optimize the UAV launch time by the ocean waves' attitude prediction model. Aimed at the problem of the unstable attitude of the rotor UAV when the rotor unfolds after the launch, the attitude control law based on the L1 adaptive method is designed for stability augmentation. Simulation results show that the vector control engine of the booster rocket can quickly adjust the pitch attitude of the UAV within 2 s. The designed L1 adaptive attitude control law can complete the stable control of the pitch attitude within 2 s when the rotor unfolds, and has robustness to the uncertain changes of aerodynamic parameters in the submarine launch.

     

  • loading
  • [1]
    DUDGEON G W, GRIBBLE J J. Helicopter attitude command attitude hold using individual channel analysis and design[J]. Journal of Guidance, Control, and Dynamics, 1997, 20(5): 962-971. doi: 10.2514/2.4141
    [2]
    KIM H J, SHIM D H. A flight control system for aerial robots: Algorithms and experiments[J]. Control Engineering Practice, 2003, 11(12): 1389-1400. doi: 10.1016/S0967-0661(03)00100-X
    [3]
    WEILENMANN M F, GEERING H P. A test bench for the rotorcraft hover control[J]. Journal of Guidance, Control, and Dynamics, 1994, 17(4): 729-736. doi: 10.2514/3.21261
    [4]
    户艳鹏, 李书, 杨延平, 等. 基于H回路成形的无人直升机动态逆控制研究[J]. 飞行力学, 2019, 37(6): 79-83. https://www.cnki.com.cn/Article/CJFDTOTAL-FHLX201906015.htm

    HU Y P, LI S, YANG Y P, et al. Research on dynamic inverse control of unmanned helicopter based on H loop-shaping[J]. Flight Dynamics, 2019, 37(6): 79-83(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-FHLX201906015.htm
    [5]
    POSTLETHWAITE I, SMERLAS A, WALKER D J, et al. H control of the NRC Bell 205 fly-by-wire helicopter[J]. Journal of the American Helicopter Society, 1999, 44(4): 1720-1724.
    [6]
    YUE A, POSTLETHWAITE I.H-optimal design for helicopter control[C]//American Control Conference.Piscataway: IEEE Press, 1988: 1679-1684.
    [7]
    STENGEL R F, BROUSSARD J R, BERRY P W. Digital flight control design for a tandem-rotor helicopter[J]. Automatica, 1978, 14(4): 301-312. doi: 10.1016/0005-1098(78)90030-4
    [8]
    宋一可, 李志宇, 王从庆, 等. 基于遗传算法的无人直升机模糊PID姿态控制[J]. 指挥控制与仿真, 2019, 41(6): 113-119. https://www.cnki.com.cn/Article/CJFDTOTAL-QBZH201906023.htm

    SONG Y K, LI Z Y, WANG C Q, et al. Fuzzy PID attitude control of unmanned helicopter based on genetic algorithms[J]. Command Control & Simulation, 2019, 41(6): 113-119(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-QBZH201906023.htm
    [9]
    DZUL A, HAMEL T, LOZANO R. Nonlinear control for a tandem rotor helicopter[J]. IFAC Proceedings Volumes, 2002, 35(1): 229-234.
    [10]
    ISHITOBI M, NISHI M, NAKASAKI K. Nonlinear adaptive model following control for a 3-DOF tandem-rotor model helicopter[J]. Control Engineering Practice, 2010, 18(8): 936-943. doi: 10.1016/j.conengprac.2010.03.017
    [11]
    HUANG C Y, CELI R, SHIH I C. Reconfigurable flight control systems for a tandem rotor helicopter[J]. Journal of the American Helicopter Society, 1999, 44(1): 50-62. doi: 10.4050/JAHS.44.50
    [12]
    孙全兵. 纵列式航模直升机建模与分析[J]. 国际航空航天科学, 2016, 4(2): 9-15.

    SUN Q B. Modeling and analysis of aero-model tandem helicopter[J]. Journal of Aerospace Science and Technology, 2016, 4(2): 9-15(in Chinese).
    [13]
    陈绍冯. 基于深度辨识模型的无人直升机自适应控制[D]. 长沙: 中国科学技术大学, 2018.

    CHEN S F.Deep identifier for dynamic modelling and adaptive control of unmanned helicopter[D]. Changsha: University of Science and Technology of China, 2018(in Chinese).
    [14]
    赵建鹏, 张爱军, 蔡程飞, 等. 基于门控循环网络的海浪波倾角预测研究[J]. 国外电子测量技术, 2019, 38(5): 96-100. https://www.cnki.com.cn/Article/CJFDTOTAL-GWCL201905019.htm

    ZHAO J P, ZHANG A J, CAI C F, et al. Research on prediction of slope of wave based on GRU network[J]. Foreign Electronic Measurement Technology, 2019, 38(5): 96-100(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-GWCL201905019.htm
    [15]
    刘玉焘. 尾座式无人机的飞行控制器设计[D]. 哈尔滨: 哈尔滨工业大学, 2014.

    LIU Y T.Design of flight controller for a tail-sitter UAV[D]. Harbin: Harbin Institute of Technology, 2014(in Chinese).
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(17)

    Article Metrics

    Article views(963) PDF downloads(143) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return