Volume 47 Issue 9
Sep.  2021
Turn off MathJax
Article Contents
YANG Jie, WANG Xinlong, CHEN Dinget al. Design of a GNSS vector tracking scheme for high-orbit space[J]. Journal of Beijing University of Aeronautics and Astronautics, 2021, 47(9): 1799-1806. doi: 10.13700/j.bh.1001-5965.2020.0300(in Chinese)
Citation: YANG Jie, WANG Xinlong, CHEN Dinget al. Design of a GNSS vector tracking scheme for high-orbit space[J]. Journal of Beijing University of Aeronautics and Astronautics, 2021, 47(9): 1799-1806. doi: 10.13700/j.bh.1001-5965.2020.0300(in Chinese)

Design of a GNSS vector tracking scheme for high-orbit space

doi: 10.13700/j.bh.1001-5965.2020.0300
Funds:

National Natural Science Foundation of China 61673040

National Natural Science Foundation of China 61074157

Aeronautical Science Foundation of China 2015ZC51038

Aeronautical Science Foundation of China 20170151002

Project of the Experimentation and Technology 1700050405

Open Research Fund of State Key Laboratory of Space-Ground Information Technology 2015-SGIIT-KFJJ-DH-01

Key Basic Research Projects 2020-JCJQ-ZD-136-12

More Information
  • Corresponding author: WANG Xinlong, E-mail: xlwon@163.com
  • Received Date: 30 Jun 2020
  • Accepted Date: 21 Dec 2020
  • Publish Date: 20 Sep 2021
  • The availability of Global Navigation Satellite System (GNSS) signal in high-orbit space deteriorates, which puts forward higher requirements for the signal tracking performance of GNSS receiver. The received power characteristics of GNSS signal in high-orbit space are analyzed by using the GNSS signal transmission link model. The applicability of two typical tracking loops, scalar-tracking and vector-tracking, in high-orbit space is compared. A GNSS vector tracking scheme for high-orbit space is designed. In this scheme, the measurement noise covariance is determined by estimating the carrier-to-noise ratio, and then the measurement information of each channel is weighted to obtain high-precision navigation parameters. The process noise covariance is determined according to the dynamic performance of the high-orbit spacecraft, and the orbit dynamic model is used to make a one-step prediction of the navigation parameters, thereby predicting the signal tracking parameters of each channel to achieve joint tracking of all channels. Simulation results show that the designed scheme can realize the assistance of strong signals to weak signals tracking in high-orbit space, so as to improve the tracking performance and availability of weak signals in high orbit space. In addition, the designed scheme also has a certain bridging ability to signal outage.

     

  • loading
  • [1]
    ASHMAN B W, BAUER F H, PARKER J J K, et al. GPS operations in high earth orbit: Recent experiences and future opportunities[C]//AIAA SpaceOps Conferences. Reston: AIAA, 2018: 1-15.
    [2]
    United Nations Office for Outer Space Affairs. The interoperable global navigation satellite systems space service[R]. Vienna: United Nations Office for Outer Space Affrirs, 2018: 1-5.
    [3]
    柴嘉薪, 王新龙, 俞能杰, 等. 高轨航天器GNSS信号链路建模与强度分析[J]. 北京航空航天大学学报, 2018, 44(7): 1496-1503. doi: 10.13700/j.bh.1001-5965.2017.0502

    CHAI J X, WANG X L, YU N J, et al. Modeling and intensity analysis of GNSS signal link for high-orbit spacecraft[J]. Journal of Beijing University of Aeronautics and Astronautics, 2018, 44(7): 1496-1503(in Chinese). doi: 10.13700/j.bh.1001-5965.2017.0502
    [4]
    MOREUA M C. GPS receiver architecture for autonomous navigation in high earth orbits[D]. Boulder: University of Colorado, 2001: 157-166.
    [5]
    SU X, GENG T, LI W W, et al. Chang'E-5T orbit determination using onboard GPS observations[J]. Sensors, 2017, 17(6): 1260. doi: 10.3390/s17061260
    [6]
    MOREAU M C, DAVIS E P, RUSSELL J. Results from the GPS flight experiment on the high earth orbit AMSAT OSCAR-40 spacecraft[C]//Proceedings of International Technical Meeting of the Satellite Division of the Institute of Navigation, 2002: 122-133.
    [7]
    WINTERNITZ L B, BAMFORD W A, PRICE S R, et al. Global positioning system navigation above 76000 km for NASA's magnetospheric multiscale mission[J]. Journal of the Institute of Navigation, 2017, 64(2), 289-300. doi: 10.1002/navi.198
    [8]
    高阳, 王猛, 刘蕾, 等. 基于高轨航天器的GNSS接收机技术[J]. 中国空间科学技术, 2017, 37(3): 101-109. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKJ201703014.htm

    GAO Y, WANG M, LIU L, et al. GNSS receiver techniques based on high earth orbit spacecraft[J]. Chinese Space Science and Technology, 2017, 37(3): 101-109(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKJ201703014.htm
    [9]
    CAPUANO V, BOTTERON C, LECLERE J, et al. Feasibility study of GNSS as navigation system to reach the Moon[J]. Acta Astronautica, 2015, 116: 186-201. doi: 10.1016/j.actaastro.2015.06.007
    [10]
    JIN S, ZHAN X Q, LIU B Y, et al. Weak and dynamic GNSS signal tracking strategies for flight missions in the space service volume[J]. Sensors, 2016, 16: 1412. http://www.chemeurope.com/en/publications/995506/sensors-vol-16-pages-1412-weak-and-dynamic-gnss-signal-tracking-strategies-for-flight-missions-in-the-space-service-volume.html?WT.mc_id=ca0438
    [11]
    LASHLEY M, BEVLY D M, HUNG J Y. Performance analysis of vector tracking algorithms for weak GPS signals in high dynamics[J]. IEEE Journal of Selected Topics in Signal Processing, 2009, 3(4): 661-673. doi: 10.1109/JSTSP.2009.2023341
    [12]
    程俊仁, 刘光斌, 姚志成. GNSS接收机矢量跟踪算法研究综述[J]. 宇航学报, 2014, 35(4): 380-387. doi: 10.3873/j.issn.1000-1328.2014.04.002

    CHENG J R, LIU G B, YAO Z C. Review on vector tracking algorithm for GNSS receiver[J]. Journal of Astronautics, 2014, 35(4): 380-387(in Chinese). doi: 10.3873/j.issn.1000-1328.2014.04.002
    [13]
    MARQUIS W A, REIGH D L. The GPS block IIR and IIR-M broadcast L-band antenna panel: Its pattern and performance[J]. Journal of the Institute of Navigation, 2015, 62(4): 329-347. doi: 10.1002/navi.123
    [14]
    ICD-GPS-240C. 2019[EB/OL]. [2020-06-24]. https://www.gps.gov/technical/icwg/.
    [15]
    SUN Z Y, WANG X L, FENG S J, et al. Design of an adaptive GPS vector tracking loop with the detection and isolation of contaminated channels[J]. GPS Solutions, 2017, 21(2): 701-713. doi: 10.1007/s10291-016-0558-5
    [16]
    PARKINSON B W, SPILKER J J, AXELRAD P, et al. Global positioning system: Theory and applications, volume 1[M]. Reston: AIAA, 1996: 390-392.
    [17]
    肖志斌, 唐小妹, 庞晶, 等. 矢量延迟锁定环码跟踪偏差产生机理研究[J]. 中国科学: 物理学力学天文学, 2010, 40(5): 568-574. https://www.cnki.com.cn/Article/CJFDTOTAL-JGXK201005013.htm

    XIAO Z B, TANG X M, PANG J, et al. The study of code tracking bias in vector delay lock loop[J]. Scientic Sinica Physica, Mechanica & Astronomica, 2010, 40(5): 568-574(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JGXK201005013.htm
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(13)

    Article Metrics

    Article views(443) PDF downloads(58) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return