Volume 47 Issue 9
Sep.  2021
Turn off MathJax
Article Contents
WANG Jingxian, SHI Peng, CHEN Zhijun, et al. Design of non-cooperative target's safe corridor and optimization of fly-by approach trajectory[J]. Journal of Beijing University of Aeronautics and Astronautics, 2021, 47(9): 1832-1840. doi: 10.13700/j.bh.1001-5965.2020.0301(in Chinese)
Citation: WANG Jingxian, SHI Peng, CHEN Zhijun, et al. Design of non-cooperative target's safe corridor and optimization of fly-by approach trajectory[J]. Journal of Beijing University of Aeronautics and Astronautics, 2021, 47(9): 1832-1840. doi: 10.13700/j.bh.1001-5965.2020.0301(in Chinese)

Design of non-cooperative target's safe corridor and optimization of fly-by approach trajectory

doi: 10.13700/j.bh.1001-5965.2020.0301
Funds:

National Natural Science Foundation of China 61690210

National Natural Science Foundation of China 61690213

National Natural Science Foundation of China 11572019

More Information
  • Corresponding author: SHI Peng, E-mail: shipeng@buaa.edu.cn
  • Received Date: 30 Jun 2020
  • Accepted Date: 07 Aug 2020
  • Publish Date: 20 Sep 2021
  • In order to improve the safety of non-cooperative target's close-range approach trajectory, and optimize the approach time and fuel consumption at the same time, this paper designs the dynamic safety corridors of uncontrolled rotating satellite for the proximity to rotating non-cooperative target. The fly-by approach is chosen to reach the corridor entrance and the fly-by approach trajectory optimization method is proposed. First, based on the establishment of an uncontrolled rotating satellite spin model, the safety zone and the keep-out-zone are planned, and the basis for selecting two safety corridors is analyzed. Second, the fly-by approach is used as a close-range approach method, and with the goal of saving fuel and shortening the approach time, the two-pulse maneuver model is optimized and three optimization algorithms are selected to obtain the approach trajectory. The simulation results show that the choice of the safe corridor is related to the form, shape and interface position of the uncontrolled satellite spin. In the optimization problem of fly-by approaching two-pulse maneuver model, it is more advantageous to use the fgoalattain algorithm for optimization.

     

  • loading
  • [1]
    陈小前, 袁建平, 赵勇, 等. 航天器在轨服务技术[M]. 北京: 中国宇航出版社, 2009: 24-28.

    CHEN X Q, YUAN J P, ZHAO Y, et al. On-orbit service technology of spacecraft[M]. Beijing: China Aerospace Press, 2009: 24-28(in Chinese).
    [2]
    李侃. 全球首个商业在轨服务航天器任务拓展飞行器-1[J]. 国际太空, 2019(11): 4-7. doi: 10.3969/j.issn.1009-2366.2019.11.002

    LI K. The world's first commercial on orbit service spacecraft MEV-1[J]. Space International, 2019(11): 4-7(in Chinese). doi: 10.3969/j.issn.1009-2366.2019.11.002
    [3]
    解永春, 陈长青. 一类禁飞区后方安全撤离轨迹的设计方法研究[J]. 空间控制技术与应用, 2009(3): 1-5. doi: 10.3969/j.issn.1674-1579.2009.03.001

    XIE Y C, CHEN C Q. Safe retreat trajectory design for rendezvous behind a keep-out-zone[J]. Aerospace Control and Application, 2009(3): 1-5(in Chinese). doi: 10.3969/j.issn.1674-1579.2009.03.001
    [4]
    李学辉, 宋申民. 慢旋非合作目标快速绕飞避碰控制[J]. 控制与决策, 2018(9): 1612-1618. https://www.cnki.com.cn/Article/CJFDTOTAL-KZYC201809011.htm

    LI X H, SONG S M. Slowly rotating non-cooperative target fast fly-around collision avoidance control[J]. Control and Design, 2018(9): 1612-1618(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-KZYC201809011.htm
    [5]
    石昊. 非合作目标接近轨迹设计与安全评估方法研究[D]. 北京: 北京航空航天大学, 2017: 11-15.

    SHI H. Research on approach trajectory design and safety assessment method of non cooperative target[D]. Beijing: Beihang University, 2017: 11-15(in Chinese).
    [6]
    XU W F, YAN L, HU Z H, et al. Area-oriented coordinated trajectory planning of dual-arm space robot for capturing a tumbling target[J]. Chinese Journal of Aeronautics, 2019, 32(9): 2151-2163. doi: 10.1016/j.cja.2019.03.018
    [7]
    王逍, 温昶煊, 赵育善, 等. 翻滚目标安全走廊内的碰撞可能性判断方法[J]. 哈尔滨工业大学学报, 2018, 50(4): 94-101. https://www.cnki.com.cn/Article/CJFDTOTAL-HEBX201804015.htm

    WANG X, WEN C X, ZHAO Y S, et al. Collision possibility detection in the safe corridor of a tumbling target[J]. Journal of Harbin Institute of Technology, 2018, 50(4): 94-101(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HEBX201804015.htm
    [8]
    石昊, 赵育善, 师鹏. 航天器近距离相对运动的轨迹偏差分析[J]. 北京航空航天大学学报, 2017, 43(3): 636-644. doi: 10.13700/j.bh.1001-5965.2016.0641

    SHI H, ZHAO Y S, SHI P. Analysis of trajectory deviation for spacecraft relative motion in close-range[J]. Journal of Beijing University of Aeronautics and Astronautics, 2017, 43(3): 636-644(in Chinese). doi: 10.13700/j.bh.1001-5965.2016.0641
    [9]
    WEN C X, GURFIL P. Relative reachable domain for spacecraft with initial state uncertainties[J]. Journal of Guidance, Control, and Dynamics, 2016, 39(3): 462-473. doi: 10.2514/1.G000721
    [10]
    WEN C X, MA J. Reachable domain for satellite relative motion along elliptic orbit with uncertainty and process noise[J]. Proceedings of the Institution of Mechanical Engineers. Part G. Journal of Aerospace Engineering, 2020, 234(7): 095441001990072.
    [11]
    ZAGARIS C, ROMANO M. Reachability analysis of planar spacecraft docking with rotating body in close proximity[J]. Journal of Guidance, Control, and Dynamics, 2018, 41(6): 1416-1422. doi: 10.2514/1.G003389
    [12]
    WEN C X, ZHAO Y S, LI B J, et al. Solving the relative Lambert's problem and accounting for its singularities[J]. Acta Astronautica, 2014, 97: 122-129. doi: 10.1016/j.actaastro.2013.12.016
    [13]
    姚玮, 罗建军, 谢剑锋, 等. 连续推力机动轨道优化设计的贝塞尔曲线法[J]. 宇航学报, 2019, 40(11): 28-39. https://www.cnki.com.cn/Article/CJFDTOTAL-YHXB201911004.htm

    YAO W, LUO J J, XIE J F, et al. A novel Bezier method for continuous thrust maneuver orbit optimal design[J]. Journal of Astronautics, 2019, 40(11): 28-39(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-YHXB201911004.htm
    [14]
    BREGER L S, HOW J P. Safe trajectories for autonomous rendezvous of spacecraft[J]. Journal of Guidance, Control, and Dynamics, 2008, 31(5): 1478-1489. doi: 10.2514/1.29590
    [15]
    梁立波. 近距离导引段交会轨迹安全性的定量评价和设计优化方法[D]. 长沙: 国防科学技术大学, 2011: 60.

    LIANG L B. Quantitative performance and design optimization approach of close-range rendezvous trajectory safety[D]. Changsha: National University of Defense Science and Technology, 2011: 60(in Chinese).
    [16]
    武冠群. 在轨服务航天器交会轨迹优化与近距离安全接近控制研究[D]. 哈尔滨: 哈尔滨工业大学, 2019: 30-33.

    WU G Q. Research on rendezvous trajectory optimization and close-range safe approach control of spacecraft for on-orbit servicing[D]. Harbin: Harbin Institute of Technology, 2019: 30-33(in Chinese).
    [17]
    赵育善, 师鹏. 航天器飞行动力学建模理论与方法[M]. 北京: 北京航空航天大学出版社, 2012: 52-53.

    ZHAO Y S, SHI P. Modeling theory and method of spacecraft flight dynamics[M]. Beijing: Beihang University Press, 2012: 52-53(in Chinese).
    [18]
    王石, 祝开建, 戴金海, 等. 用EA求解非固定时间轨道转移和拦截问题[J]. 国防科技大学学报, 2001, 23(5): 1-4. https://www.cnki.com.cn/Article/CJFDTOTAL-GFKJ200105000.htm

    WANG S, ZHU K J, DAI J H, et al. Solving orbital transformation and interception problems based on EA[J]. Journal of National University of Defense Technology, 2001, 23(5): 1-4(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-GFKJ200105000.htm
    [19]
    马昌凤, 柯艺芬, 谢亚君. 最优化计算方法及其MATLAB程序实现[M]. 北京: 国防工业出版社, 2015: 51-57.

    MA C F, KE Y F, XIE Y J. Optimization calculation method and MATLAB program realization[M]. Beijing: National Defense Industry Press, 2015: 51-57(in Chinese).
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(20)  / Tables(4)

    Article Metrics

    Article views(538) PDF downloads(66) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return