Citation: | ZHANG Kewei, ZHAO Xiaolin, HE Li, et al. A chicken swarm optimization algorithm based on improved X-best guided individual and dynamic hierarchy update mechanism[J]. Journal of Beijing University of Aeronautics and Astronautics, 2021, 47(12): 2579-2593. doi: 10.13700/j.bh.1001-5965.2020.0322(in Chinese) |
In the improvement process of swarm intelligence algorithms, elite individuals are often used to accelerate the convergence, but excessive dependence on them will lead to the decline of population diversity and global convergence. In this regard, a chicken swarm optimization algorithm based on improved X-best guided individual and dynamic hierarchy update mechanism is proposed in this paper. Firstly, in the individual update stage, elite individuals are introduced into the search equation to accelerate the convergence, while the ordinary individuals are also introduced into the search equation to balance the influence of the elite individuals. Therefore, the information of elite and ordinary individuals can be fully used, and the population diversity and global convergence are improved. Secondly, by dynamically optimizing the hierarchy update parameter, the promotion effect of the population hierarchy update mechanism on the convergence is strengthened. Finally, through complexity and convergence analysis, the simplicity and global convergence of IDCSO are proved. The simulation results show that IDCSO has obvious advantages over other comparative algorithms in terms of optimization accuracy, optimization success rate and convergence speed.
[1] |
MENG X B, LIU Y, GAO X Z, et al. A new bio-inspired algorithm: Chicken swarm optimization[C]//International Conference in Swarm Intelligence. Berlin: Springer, 2014: 86-94.
|
[2] |
YANG X S, KARAMANOGLU M. Swarm intelligence and bio-inspired computation[M]. Amsterdam: Elsevier, 2013: 3-23.
|
[3] |
DEB S, GAO X Z, TAMMI K, et al. Recent studies on chicken swarm optimization algorithm: A review (2014-2018)[J]. Artificial Intelligence Review, 2020, 53(3): 1737-1765. doi: 10.1007/s10462-019-09718-3
|
[4] |
CHEN Y L, HE P L, ZHANG Y H. Combining penalty function with modified chicken swarm optimization for constrained optimization[C]//Proceedings of the First International Conference on Information Sciences, Machinery, Materials and Energy. Paris: Atlantis Press, 2015: 1899-1907.
|
[5] |
WANG K, LI Z B, CHENG H, et al. Mutation chicken swarm optimization based on nonlinear inertia weight[C]//2017 3rd IEEE International Conference on Computer and Communications (ICCC). Piscataway: IEEE Press, 2017: 2206-2211.
|
[6] |
IRSALINDA N, THOBIRIN A, WIJAYANTI D E. Chicken swarm as a multi step algorithm for global optimization[J]. International Journal of Engineering Science Invention, 2017, 6(1): 8-14.
|
[7] |
WU D H, KONG F, GAO W Z, et al. Improved chicken swarm optimization[C]//2015 IEEE International Conference on Cyber Technology in Automation, Control, and Intelligent Systems (CYBER). Piscataway: IEEE Press, 2015: 681-686.
|
[8] |
黄霞, 叶春明, 郑军. 混合改进搜索策略的鸡群优化算法[J]. 计算机工程与应用, 2018, 54(7): 176-181.
HUANG X, YE C M, ZHENG J. Chicken swarm optimization algorithm of hybrid evolutionary searching strategy[J]. Computer Engineering and Applications, 2018, 54(7): 176-181(in Chinese).
|
[9] |
杨菊蜻, 张达敏, 张慕雪, 等. 一种混合改进的鸡群优化算法[J]. 计算机应用研究, 2018, 35(11): 3290-3293. doi: 10.3969/j.issn.1001-3695.2018.11.021
YANG J Q, ZHANG D M, ZHANG M X, et al. Hybrid improved for chicken swarm optimization algorithm[J]. Application Research of Computers, 2018, 35(11): 3290-3293(in Chinese). doi: 10.3969/j.issn.1001-3695.2018.11.021
|
[10] |
张慕雪, 张达敏, 杨菊蜻, 等. 一种基于正向学习和反向学习的改进鸡群算法[J]. 微电子学与计算机, 2018, 35(6): 22-27.
ZHANG M X, ZHANG D M, YANG J Q, et al. An improved chicken algorithm based on positive learning and reverse learning[J]. Microelectronics & Computer, 2018, 35(6): 22-27(in Chinese).
|
[11] |
AHMED K, HASSANIEN A E, BHATTACHARYYA S. A novel chaotic chicken swarm optimization algorithm for feature selection[C]//2017 Third International Conference on Research in Computational Intelligence and Communication Networks (ICRCICN). Piscataway: IEEE Press, 2017: 259-264.
|
[12] |
李宾, 申国君, 孙庚, 等. 改进的鸡群优化算法[J]. 吉林大学学报(工学版), 2019, 49(4): 1339-1344.
LI B, SHEN G J, SUN G, et al. Improved chicken swarm optimization algorithm[J]. Journal of Jilin University (Engineering and Technology Edition), 2019, 49(4): 1339-1344(in Chinese).
|
[13] |
SHUANG L, TIE F, SUN G, et al. Transmission power optimization for reducing sidelobe via bat-chicken swarm optimization in distributed collaborative beamforming[C]//2016 2nd IEEE International Conference on Computer and Communications (ICCC). Piscataway: IEEE Press, 2016: 2164-2168.
|
[14] |
LIANG S, FENG T, SUN G. Sidelobe-level suppression for linear and circular antenna arrays via the cuckoo search-chicken swarm optimization algorithm[J]. IET Microwaves, Antennas & Propagation, 2017, 11(2): 209-218.
|
[15] |
KUMAR D S, VENI S. Enhanced energy steady clustering using convergence node based path optimization with hybrid chicken swarm algorithm in MANET [J]. International Journal of Pure and Applied Mathematics, 2017, 118: 767-788.
|
[16] |
LI Y H, ZHAN Z H, LIN S J, et al. Competitive and cooperative particle swarm optimization with information sharing mechanism for global optimization problems[J]. Information Sciences, 2015, 293: 370-382. doi: 10.1016/j.ins.2014.09.030
|
[17] |
MILLONAS M M. Swarms, phase transitions, and collective intelligence[J]. Computational Intelligence: A Dynamic System Perspective, 1994, 101(8): 137-151.
|
[18] |
杜振鑫, 刘广钟, 韩德志, 等. 基于全局无偏搜索策略的精英人工蜂群算法[J]. 电子学报, 2018, 46(2): 308-314. doi: 10.3969/j.issn.0372-2112.2018.02.008
DU Z X, LIU G Z, HAN D Z, et al. Artificial bee colony algorithm with global and unbiased search strategy[J]. Acta Electronica Sinica, 2018, 46(2): 308-314(in Chinese). doi: 10.3969/j.issn.0372-2112.2018.02.008
|
[19] |
WOLPERT D H, MACREADY W G. No free lunch theorems for optimization[J]. IEEE Transactions on Evolutionary Computation, 1997, 1(1): 67-82. doi: 10.1109/4235.585893
|
[20] |
任子晖, 王坚, 高岳林. 马尔科夫链的粒子群优化算法全局收敛性分析[J]. 控制理论与应用, 2011, 28(4): 462-466.
REN Z H, WANG J, GAO Y L. The global convergence analysis of particle swarm optimization algorithm based on Markov chain[J]. Control Theory & Applications, 2011, 28(4): 462-466(in Chinese).
|
[21] |
宁爱平, 张雪英. 人工蜂群算法的收敛性分析[J]. 控制与决策, 2013, 28(10): 1554-1558.
NING A P, ZHANG X Y. Convergence analysis of artificial bee colony algorithm[J]. Control and Decision, 2013, 28(10): 1554-1558(in Chinese).
|
[22] |
SOLIS F J, WETS R J B. Minimization by random search techniques[J]. Mathematics of Operations Research, 1981, 6(1): 19-30. doi: 10.1287/moor.6.1.19
|
[23] |
吴定会, 孔飞, 纪志成. 鸡群算法的收敛性分析[J]. 中南大学学报(自然科学版), 2017, 48(8): 2105-2112.
WU D H, KONG F, JI Z C. Convergence analysis of chicken swarm optimization algorithm[J]. Journal of Central South University (Science and Technology), 2017, 48(8): 2105-2112(in Chinese).
|
[24] |
张文修, 梁怡. 遗传算法的数学基础[M]. 西安: 西安交通大学出版社, 2003: 67-87.
ZHANG W X, LIANG Y. Mathematical foundation of genetic algorithm[M]. Xi'an: Xi'an Jiaotong University Press, 2003: 67-87(in Chinese).
|
[25] |
QU C W, ZHAO S A, FU Y M, et al. Chicken swarm optimization based on elite opposition-based learning[J]. Mathematical Problems in Engineering, 2017, 2017: 1-20.
|
[26] |
韩萌. 耗散结构和差分变异混合的鸡群算法[J]. 浙江大学学报(理学版), 2018, 45(3): 272-283.
HAN M. Hybrid chicken swarm algorithm with dissipative structure and differential mutation[J]. Journal of Zhejiang University (Science Edition), 2018, 45(3): 272-283(in Chinese).
|
[27] |
杨小健, 徐小婷, 李荣雨. 求解高维优化问题的遗传鸡群优化算法[J]. 计算机工程与应用, 2018, 54(11): 133-139. doi: 10.3778/j.issn.1002-8331.1701-0237
YANG X J, XU X T, LI R Y. Genetic chicken swarm optimization algorithm for solving high-dimensional optimization problems[J]. Computer Engineering and Applications, 2018, 54(11): 133-139(in Chinese). doi: 10.3778/j.issn.1002-8331.1701-0237
|
[1] | CHEN S K,JI J J,JING Y B. A self-expanding identification method for non-cooperative space radiation sources[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(2):644-654 (in Chinese). doi: 10.13700/j.bh.1001-5965.2023.0024. |
[2] | GUO Z J,LU H,LIU N,et al. Total ionizing dose effect analysis and radiation hardening design method of Buck-Boost converter[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(2):389-396 (in Chinese). doi: 10.13700/j.bh.1001-5965.2023.0050. |
[3] | LI J Q,SHI P. Optimization of LEO remote sensing constellation with enhanced regional coverage[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(12):3912-3920 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0878. |
[4] | SONG X G,JIN J,ZHANG M Q,et al. Turbulence-radiation interaction in turbulent jet flame based on large-eddy simulation[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(8):2667-2676 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0697. |
[5] | XING Xue, WANG Shunan, DING Jianjun, MA Bingjie, WANG Shuai, DU Jingtao. Thermoacoustic coupling characteristics prediction and experimental study of Rijke tube with impedance boundaries[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2024.0644 |
[6] | WANG J D,WANG X,TIAN Y R,et al. Threat assessment of radar radiation sources based on behavioral characteristics[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(10):3196-3207 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0848. |
[7] | ZHANG Wenfei, ZHANG Huawei, MEI Yuan, XIAO Nan, ZHU Qiudong, LIAN Jing. A DINO remote sensing target detection algorithm combining efficient hybrid encoder and structural reparameterization[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2024.0320 |
[8] | SUN J C,KANG C X,XIE Y Q,et al. Thermal design and validation of high temperature material science experiment system on China space station[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(3):814-820 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0365. |
[9] | YANG Z J,ZHANG C F,ZHAO R J,et al. Thermal deformation analysis and experimental verification of spatial deployable antenna hinge[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(1):243-249 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0219. |
[10] | TAN Chuan-rui, LI Tang, CHEN Wen-qian, WANG Feng, YANG Dong-kai, WU Shi-yu. Evaluation of TDOA Based Air Target Localization Algorithm Using GNSS-Based Passive Radar[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2023.0685 |
[11] | LUO Wudi, REN Junxue, LI Zhihui, TANG Haibin. Study on radiation characteristics of multi-phase plumes containing ice crystals in orbit-control engines[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2023.0439 |
[12] | SHI Z,WANG B,YANG B,et al. Single-event radiation hardening method for 14 nm pFinFET device[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(12):3335-3342 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0071. |
[13] | SUN H D,JING B,ZHANG Y,et al. Multi-factor degradation test design for molecular sieve oxygen concentrator[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(4):965-971 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0339. |
[14] | HE Lan, LIU Qiang, YANG Yan-chu, ZHU Rong-chen, ZHOU Jiang-hua. Influence of cold cloud radiation to the thermal-dynamic characteristics of super-pressure balloon[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2023.0435 |
[15] | MENG Q L,ZHAO Z M,CHEN X G,et al. Thermal vacuum test study of mechanically pumped two-phase loop for space remote sensor[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(3):559-568 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0270. |
[16] | HE T Y,DONG Y,WANG H,et al. Design and optimization of modular parabolic deployable mechanism[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(9):2473-2481 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0652. |
[17] | YANG M,WANG L,YU F,et al. Design and on-orbit application of radiator for space optical remote sensor with large aperture[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(12):3293-3302 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0116. |
[18] | KANG Rui, LIU Haoran, ZHANG Qingyuan, YU Li, ZHAI Guofu. Function oriented belief reliability design and optimization of new torsion spring electrical connectors[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(9): 1745-1756. doi: 10.13700/j.bh.1001-5965.2022.0323 |
[19] | SU Donglin, CUI Shuo, BAI Jiangfei, LI Yaoyao. Fast prediction method for radiated and scattered coupled fields in complex electromagnetic environment[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(9): 1553-1560. doi: 10.13700/j.bh.1001-5965.2022.0705 |
[20] | LIANG Fengchao, TAN Shuang, HUANG Gang, FAN Jiankai, LIN Zhe, KANG Xiaojun. Design and implementation of a high precision 6-DOF parallel platform for a space optical remote sensor[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(7): 1332-1342. doi: 10.13700/j.bh.1001-5965.2021.0224 |
1. | 秦硕. 精密透镜系统的模型预测热控方法. 激光与光电子学进展. 2022(17): 375-380 . ![]() | |
2. | 吴小娟,陈奕州,张通德,姜铭,王永前,卢晓宁. 基于模块化的测绘仪器设计探讨. 北京测绘. 2020(08): 1036-1040 . ![]() |