Volume 47 Issue 12
Dec.  2021
Turn off MathJax
Article Contents
ZHANG Kewei, ZHAO Xiaolin, HE Li, et al. A chicken swarm optimization algorithm based on improved X-best guided individual and dynamic hierarchy update mechanism[J]. Journal of Beijing University of Aeronautics and Astronautics, 2021, 47(12): 2579-2593. doi: 10.13700/j.bh.1001-5965.2020.0322(in Chinese)
Citation: ZHANG Kewei, ZHAO Xiaolin, HE Li, et al. A chicken swarm optimization algorithm based on improved X-best guided individual and dynamic hierarchy update mechanism[J]. Journal of Beijing University of Aeronautics and Astronautics, 2021, 47(12): 2579-2593. doi: 10.13700/j.bh.1001-5965.2020.0322(in Chinese)

A chicken swarm optimization algorithm based on improved X-best guided individual and dynamic hierarchy update mechanism

doi: 10.13700/j.bh.1001-5965.2020.0322
Funds:

National Natural Science Foundation of China 61503405

More Information
  • Corresponding author: LI Zongzhe, E-mail: lzz144@163.com
  • Received Date: 07 Jul 2020
  • Accepted Date: 01 Jul 2021
  • Publish Date: 20 Dec 2021
  • In the improvement process of swarm intelligence algorithms, elite individuals are often used to accelerate the convergence, but excessive dependence on them will lead to the decline of population diversity and global convergence. In this regard, a chicken swarm optimization algorithm based on improved X-best guided individual and dynamic hierarchy update mechanism is proposed in this paper. Firstly, in the individual update stage, elite individuals are introduced into the search equation to accelerate the convergence, while the ordinary individuals are also introduced into the search equation to balance the influence of the elite individuals. Therefore, the information of elite and ordinary individuals can be fully used, and the population diversity and global convergence are improved. Secondly, by dynamically optimizing the hierarchy update parameter, the promotion effect of the population hierarchy update mechanism on the convergence is strengthened. Finally, through complexity and convergence analysis, the simplicity and global convergence of IDCSO are proved. The simulation results show that IDCSO has obvious advantages over other comparative algorithms in terms of optimization accuracy, optimization success rate and convergence speed.

     

  • loading
  • [1]
    MENG X B, LIU Y, GAO X Z, et al. A new bio-inspired algorithm: Chicken swarm optimization[C]//International Conference in Swarm Intelligence. Berlin: Springer, 2014: 86-94.
    [2]
    YANG X S, KARAMANOGLU M. Swarm intelligence and bio-inspired computation[M]. Amsterdam: Elsevier, 2013: 3-23.
    [3]
    DEB S, GAO X Z, TAMMI K, et al. Recent studies on chicken swarm optimization algorithm: A review (2014-2018)[J]. Artificial Intelligence Review, 2020, 53(3): 1737-1765. doi: 10.1007/s10462-019-09718-3
    [4]
    CHEN Y L, HE P L, ZHANG Y H. Combining penalty function with modified chicken swarm optimization for constrained optimization[C]//Proceedings of the First International Conference on Information Sciences, Machinery, Materials and Energy. Paris: Atlantis Press, 2015: 1899-1907.
    [5]
    WANG K, LI Z B, CHENG H, et al. Mutation chicken swarm optimization based on nonlinear inertia weight[C]//2017 3rd IEEE International Conference on Computer and Communications (ICCC). Piscataway: IEEE Press, 2017: 2206-2211.
    [6]
    IRSALINDA N, THOBIRIN A, WIJAYANTI D E. Chicken swarm as a multi step algorithm for global optimization[J]. International Journal of Engineering Science Invention, 2017, 6(1): 8-14. http://ijesi.org/papers/Vol(6)1/B06010814.pdf
    [7]
    WU D H, KONG F, GAO W Z, et al. Improved chicken swarm optimization[C]//2015 IEEE International Conference on Cyber Technology in Automation, Control, and Intelligent Systems (CYBER). Piscataway: IEEE Press, 2015: 681-686.
    [8]
    黄霞, 叶春明, 郑军. 混合改进搜索策略的鸡群优化算法[J]. 计算机工程与应用, 2018, 54(7): 176-181. https://www.cnki.com.cn/Article/CJFDTOTAL-JSGG201807028.htm

    HUANG X, YE C M, ZHENG J. Chicken swarm optimization algorithm of hybrid evolutionary searching strategy[J]. Computer Engineering and Applications, 2018, 54(7): 176-181(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JSGG201807028.htm
    [9]
    杨菊蜻, 张达敏, 张慕雪, 等. 一种混合改进的鸡群优化算法[J]. 计算机应用研究, 2018, 35(11): 3290-3293. doi: 10.3969/j.issn.1001-3695.2018.11.021

    YANG J Q, ZHANG D M, ZHANG M X, et al. Hybrid improved for chicken swarm optimization algorithm[J]. Application Research of Computers, 2018, 35(11): 3290-3293(in Chinese). doi: 10.3969/j.issn.1001-3695.2018.11.021
    [10]
    张慕雪, 张达敏, 杨菊蜻, 等. 一种基于正向学习和反向学习的改进鸡群算法[J]. 微电子学与计算机, 2018, 35(6): 22-27. https://www.cnki.com.cn/Article/CJFDTOTAL-WXYJ201806005.htm

    ZHANG M X, ZHANG D M, YANG J Q, et al. An improved chicken algorithm based on positive learning and reverse learning[J]. Microelectronics & Computer, 2018, 35(6): 22-27(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-WXYJ201806005.htm
    [11]
    AHMED K, HASSANIEN A E, BHATTACHARYYA S. A novel chaotic chicken swarm optimization algorithm for feature selection[C]//2017 Third International Conference on Research in Computational Intelligence and Communication Networks (ICRCICN). Piscataway: IEEE Press, 2017: 259-264.
    [12]
    李宾, 申国君, 孙庚, 等. 改进的鸡群优化算法[J]. 吉林大学学报(工学版), 2019, 49(4): 1339-1344. https://www.cnki.com.cn/Article/CJFDTOTAL-JLGY201904038.htm

    LI B, SHEN G J, SUN G, et al. Improved chicken swarm optimization algorithm[J]. Journal of Jilin University (Engineering and Technology Edition), 2019, 49(4): 1339-1344(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JLGY201904038.htm
    [13]
    SHUANG L, TIE F, SUN G, et al. Transmission power optimization for reducing sidelobe via bat-chicken swarm optimization in distributed collaborative beamforming[C]//2016 2nd IEEE International Conference on Computer and Communications (ICCC). Piscataway: IEEE Press, 2016: 2164-2168.
    [14]
    LIANG S, FENG T, SUN G. Sidelobe-level suppression for linear and circular antenna arrays via the cuckoo search-chicken swarm optimization algorithm[J]. IET Microwaves, Antennas & Propagation, 2017, 11(2): 209-218. http://www.onacademic.com/detail/journal_1000039635543110_2c12.html
    [15]
    KUMAR D S, VENI S. Enhanced energy steady clustering using convergence node based path optimization with hybrid chicken swarm algorithm in MANET [J]. International Journal of Pure and Applied Mathematics, 2017, 118: 767-788. http://www.researchgate.net/publication/327366158_Enhanced_Energy_Steady_Clustering_Using_Convergence_Node_Based_Path_Optimization_with_Hybrid_Chicken_Swarm_Algorithm_in_MANET
    [16]
    LI Y H, ZHAN Z H, LIN S J, et al. Competitive and cooperative particle swarm optimization with information sharing mechanism for global optimization problems[J]. Information Sciences, 2015, 293: 370-382. doi: 10.1016/j.ins.2014.09.030
    [17]
    MILLONAS M M. Swarms, phase transitions, and collective intelligence[J]. Computational Intelligence: A Dynamic System Perspective, 1994, 101(8): 137-151. http://arxiv.org/pdf/adap-org/9306002
    [18]
    杜振鑫, 刘广钟, 韩德志, 等. 基于全局无偏搜索策略的精英人工蜂群算法[J]. 电子学报, 2018, 46(2): 308-314. doi: 10.3969/j.issn.0372-2112.2018.02.008

    DU Z X, LIU G Z, HAN D Z, et al. Artificial bee colony algorithm with global and unbiased search strategy[J]. Acta Electronica Sinica, 2018, 46(2): 308-314(in Chinese). doi: 10.3969/j.issn.0372-2112.2018.02.008
    [19]
    WOLPERT D H, MACREADY W G. No free lunch theorems for optimization[J]. IEEE Transactions on Evolutionary Computation, 1997, 1(1): 67-82. doi: 10.1109/4235.585893
    [20]
    任子晖, 王坚, 高岳林. 马尔科夫链的粒子群优化算法全局收敛性分析[J]. 控制理论与应用, 2011, 28(4): 462-466. https://www.cnki.com.cn/Article/CJFDTOTAL-KZLY201104004.htm

    REN Z H, WANG J, GAO Y L. The global convergence analysis of particle swarm optimization algorithm based on Markov chain[J]. Control Theory & Applications, 2011, 28(4): 462-466(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-KZLY201104004.htm
    [21]
    宁爱平, 张雪英. 人工蜂群算法的收敛性分析[J]. 控制与决策, 2013, 28(10): 1554-1558. https://www.cnki.com.cn/Article/CJFDTOTAL-KZYC201310021.htm

    NING A P, ZHANG X Y. Convergence analysis of artificial bee colony algorithm[J]. Control and Decision, 2013, 28(10): 1554-1558(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-KZYC201310021.htm
    [22]
    SOLIS F J, WETS R J B. Minimization by random search techniques[J]. Mathematics of Operations Research, 1981, 6(1): 19-30. doi: 10.1287/moor.6.1.19
    [23]
    吴定会, 孔飞, 纪志成. 鸡群算法的收敛性分析[J]. 中南大学学报(自然科学版), 2017, 48(8): 2105-2112. https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD201708019.htm

    WU D H, KONG F, JI Z C. Convergence analysis of chicken swarm optimization algorithm[J]. Journal of Central South University (Science and Technology), 2017, 48(8): 2105-2112(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD201708019.htm
    [24]
    张文修, 梁怡. 遗传算法的数学基础[M]. 西安: 西安交通大学出版社, 2003: 67-87.

    ZHANG W X, LIANG Y. Mathematical foundation of genetic algorithm[M]. Xi'an: Xi'an Jiaotong University Press, 2003: 67-87(in Chinese).
    [25]
    QU C W, ZHAO S A, FU Y M, et al. Chicken swarm optimization based on elite opposition-based learning[J]. Mathematical Problems in Engineering, 2017, 2017: 1-20. http://smartsearch.nstl.gov.cn/paper_detail.html?id=112c2ceb379ee2d66c48cee6b3470ca1
    [26]
    韩萌. 耗散结构和差分变异混合的鸡群算法[J]. 浙江大学学报(理学版), 2018, 45(3): 272-283. https://www.cnki.com.cn/Article/CJFDTOTAL-HZDX201803002.htm

    HAN M. Hybrid chicken swarm algorithm with dissipative structure and differential mutation[J]. Journal of Zhejiang University (Science Edition), 2018, 45(3): 272-283(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HZDX201803002.htm
    [27]
    杨小健, 徐小婷, 李荣雨. 求解高维优化问题的遗传鸡群优化算法[J]. 计算机工程与应用, 2018, 54(11): 133-139. doi: 10.3778/j.issn.1002-8331.1701-0237

    YANG X J, XU X T, LI R Y. Genetic chicken swarm optimization algorithm for solving high-dimensional optimization problems[J]. Computer Engineering and Applications, 2018, 54(11): 133-139(in Chinese). doi: 10.3778/j.issn.1002-8331.1701-0237
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)  / Tables(5)

    Article Metrics

    Article views(358) PDF downloads(23) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return