Volume 47 Issue 9
Sep.  2021
Turn off MathJax
Article Contents
SUN Xinyue, TIAN Wei, HU Junshan, et al. A hole position correction method of interpolation Coons surface based on genetic algorithm[J]. Journal of Beijing University of Aeronautics and Astronautics, 2021, 47(9): 1814-1822. doi: 10.13700/j.bh.1001-5965.2020.0324(in Chinese)
Citation: SUN Xinyue, TIAN Wei, HU Junshan, et al. A hole position correction method of interpolation Coons surface based on genetic algorithm[J]. Journal of Beijing University of Aeronautics and Astronautics, 2021, 47(9): 1814-1822. doi: 10.13700/j.bh.1001-5965.2020.0324(in Chinese)

A hole position correction method of interpolation Coons surface based on genetic algorithm

doi: 10.13700/j.bh.1001-5965.2020.0324
Funds:

National Science and Technology Major Project of China 2018ZX04006001

More Information
  • Corresponding author: TIAN Wei, E-mail: tw_nj@nuaa.edu.cn
  • Received Date: 07 Jul 2020
  • Accepted Date: 07 Aug 2020
  • Publish Date: 20 Sep 2021
  • In the automatic drilling process of the robot, the position of drilling is usually obtained from the process digital model of the workpiece to be drilled, and the position deviation and deformation will occur during the installation process of the workpiece to be drilled. Hence, the hole position accuracy requirement cannot be met if drilling according to the point position obtained from the process digital model directly. This paper proposes an interpolation Coons surface hole position correction method based on genetic algorithm to ensure the hole position accuracy of automatic drilling. The bilinear Coons error surface model is established using the corner reference holes in the drilling area, the error compensation vector of the hole to be drilled is calculated by the model, and the theoretical drilling position is compensated using the error compensation vector. At the same time, the reference holes in the drilling area are used to construct a genetic algorithm model to calculate the optimal value of the tangent vector modulus length to solve the problem that the tangent vector modulus length of the bilinear Coons error surface cannot be determined. The effectiveness and accuracy of the algorithm are verified through experiments. The results show that the use of interpolation Coons surface hole position correction method based on genetic algorithm can effectively compensate the hole position error, and the average hole position error is only 0.195 6 mm after compensation. Compared with the traditional interpolation surface methods, the hole position error is reduced by 5%-10% using interpolation Coons surface hole position correction method based on genetic algorithm.

     

  • loading
  • [1]
    范玉青. 飞机数字化装配技术综述[J]. 航空制造技术, 2006(10): 44-48. https://www.cnki.com.cn/Article/CJFDTOTAL-HKGJ200610008.htm

    FAN Y Q. Overview of digital assembly technology for aircraft[J]. Aeronautical Manufacturing Technology, 2006(10): 44-48(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HKGJ200610008.htm
    [2]
    LIN C T, WANG M J. Human-robot interaction in an aircraft wing drilling system[J]. International Journal of Industrial Ergonomics, 1999, 23(1-2): 83-94. doi: 10.1016/S0169-8141(97)00103-0
    [3]
    ZHU W D, MEI B, YAN G R, et al. Measurement error analysis and accuracy enhancement of 2D vision system for robotic drilling[J]. Robotics and Computer-Integrated Manufacturing, 2014, 30(2): 160-171. doi: 10.1016/j.rcim.2013.09.014
    [4]
    袁红璇. 飞机结构件连接孔制造技术[J]. 航空制造技术, 2007(1): 96-99. https://www.cnki.com.cn/Article/CJFDTOTAL-HKGJ200701020.htm

    YUAN H X. Manufacturing technology of connecting hole in aircraft structures[J]. Aeronautical Manufacturing Technology, 2007(1): 96-99(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HKGJ200701020.htm
    [5]
    何胜强. 大型飞机数字化装配技术与装备[M]. 北京: 航空工业出版社, 2013: 264-272.

    HE S Q. Digital assembly technologies and equipments of the jumbo aircraft[M]. Beijing: Aviation Industry Press, 2013: 264-272(in Chinese).
    [6]
    ZHU W D, QU W W, CAO L H, et al. An off-line programming system for robotic drilling in aerospace manufacturing[J]. The International Journal of Advanced Manufacturing Technology, 2013, 68(9-12): 2535-2545. doi: 10.1007/s00170-013-4873-5
    [7]
    毕运波, 涂国娇, 方伟, 等. 环形轨自动化制孔系统孔位修正方法[J]. 浙江大学学报(工学版), 2015, 49(10): 1863-1869. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDZC201510007.htm

    BI Y B, TU G J, FANG W, et al. Correcting method of hole position for flexible track automatic drilling system[J]. Journal of Zhejiang University (Engineering Science), 2015, 49(10): 1863-1869(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-ZDZC201510007.htm
    [8]
    王青, 郑守国, 李江雄, 等. 基于孔边距约束和Shepard插值的孔位修正方法[J]. 航空学报, 2015, 36(12): 4025-4034. https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201512026.htm

    WANG Q, ZHENG S G, LI J X, et al. A correction method for hole positions based on hole margin constraints and Shepard interpolation[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(12): 4025-4034(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201512026.htm
    [9]
    严秋白. 基于爬行机器人的精准制孔技术研究[D]. 南京: 南京航空航天大学, 2016: 15-20.

    YAN Q B. Research on precision drilling technology based on crawling robot[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2016: 15-20(in Chinese).
    [10]
    石循磊, 张继文, 刘顺涛, 等. 基于Kriging模型插值的孔位修正策略[J]. 航空学报, 2019, 41(9): 423499. https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB202009026.htm

    SHI X L, ZHANG J W, LIU S T, et al. Correction strategy for hole positions based on Kriging interpolation[J]. Acta Aeronautica et Astronautica Sinica, 2019, 41(9): 423499(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB202009026.htm
    [11]
    ZOU C, LIU J H. An off-line programming system for flexible drilling of aircraft wing structures[J]. Assembly Automation, 2011, 31(2): 161-168. doi: 10.1108/01445151111117746
    [12]
    朱心雄. 自由曲线曲面造型技术[M]. 北京: 科学出版社, 2000: 57-65.

    ZHU X X. Modeling technology for free curves and surfaces[M]. Beijing: Science Press, 2000: 57-65(in Chinese).
    [13]
    FERGUSON J. Multivariable curve interpolation[J]. Journal of the ACM, 1964, 11(2): 221-228. doi: 10.1145/321217.321225
    [14]
    FAUX I D, PRAT M J. Computational geometry for design and manufacture[M]. New York: Ellis Horwood Ltd, 1979: 243.
    [15]
    CHENG C H, YANG H S. Optimization of geometrical parameters for Stirling engines based on theoretical analysis[J]. Applied Energy, 2012, 92: 395-405.
    [16]
    郑谐, 王婷, 徐云天. 基于遗传算法的飞机脉动式装配线平衡[J]. 计算机集成制造系统, 2018, 24(6): 1367-1373. https://www.cnki.com.cn/Article/CJFDTOTAL-JSJJ201806005.htm

    ZHENG X, WANG T, XU Y T. Automatic drilling and riveting technology and its application in digital assembly[J]. Computer Integrated Manufacturing System, 2018, 24(6): 1367-1373(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JSJJ201806005.htm
    [17]
    陶杨, 韩维. 基于改进多目标遗传算法的舰尾紊流模拟方法[J]. 北京航空航天大学学报, 2015, 41(3): 443-448. doi: 10.13700/j.bh.1001-5965.2014.0198

    TAO Y, HAN W. Carrier airwake simulation methods based on improved multi-objective genetic algorithm[J]. Journal of Beijing University of Aeronautics and Astronautics, 2015, 41(3): 443-448(in Chinese). doi: 10.13700/j.bh.1001-5965.2014.0198
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(11)  / Tables(5)

    Article Metrics

    Article views(332) PDF downloads(33) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return