Volume 47 Issue 2
Feb.  2021
Turn off MathJax
Article Contents
RUAN Hui, LIU Lei, HU Xiaoguanget al. Satellite time series data classification method based on trend symbolic aggregation approximation[J]. Journal of Beijing University of Aeronautics and Astronautics, 2021, 47(2): 333-341. doi: 10.13700/j.bh.1001-5965.2020.0332(in Chinese)
Citation: RUAN Hui, LIU Lei, HU Xiaoguanget al. Satellite time series data classification method based on trend symbolic aggregation approximation[J]. Journal of Beijing University of Aeronautics and Astronautics, 2021, 47(2): 333-341. doi: 10.13700/j.bh.1001-5965.2020.0332(in Chinese)

Satellite time series data classification method based on trend symbolic aggregation approximation

doi: 10.13700/j.bh.1001-5965.2020.0332
Funds:

National Natural Science Foundation of China 51807003

National Defense Basic Scientific Research Program of China JKCY2016204A102

More Information
  • Corresponding author: HU Xiaoguang. E-mail: xiaoguang@buaa.edu.cn
  • Received Date: 12 Jul 2020
  • Accepted Date: 07 Aug 2020
  • Publish Date: 20 Feb 2021
  • As the main symbolic representation method widely used in time series data mining, the Symbolic Aggregation Approximation (SAX) uses the mean value of segments as the symbolic representation. Since it is impossible to distinguish different time series that have different trends but the same mean value, it may lead to incorrect classification. This paper presents an improved symbol representation-Trend Symbol Aggregation Approximation (TrSAX), which integrates SAX and least squares method to describe the mean and slope value of the time series, and constructs the BOTS classifier. In addition, this paper analyzes the angle sequence, rotation speed sequence, and current sequence in the satellite analog telemetry time series data, and selects three datasets similar to these three sequences from the UCR public dataset for classification experiment verification. They are compared with the 1-NN classification methods using SAX, two improved SAX, classic Euclidean Distance (ED) and Dynamic Time Warping (DTW). The results show that the classification error rate of the proposed BOTS classification method is significantly lower than the other five classification methods.

     

  • loading
  • [1]
    杨海民, 潘志松, 白玮. 时间序列预测方法综述[J]. 计算机科学, 2019, 46(1): 21-28. https://www.cnki.com.cn/Article/CJFDTOTAL-JSJA201901005.htm

    YANG H M, PAN Z S, BAI W. Review of time series prediction methods[J]. Computer Science, 2019, 46(1): 21-28(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JSJA201901005.htm
    [2]
    史欣田, 庞景月, 张新, 等. 基于集成极限学习机的卫星大数据分析[J]. 仪器仪表学报, 2018, 39(12): 81-91. https://www.cnki.com.cn/Article/CJFDTOTAL-YQXB201812010.htm

    SHI X T, PANG J Y, ZHANG X, et al. Satellite big data analysis based on bagging extreme learning machine[J]. Chinese Journal of Scientific Instrument, 2018, 39(12): 81-91(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-YQXB201812010.htm
    [3]
    彭喜元, 庞景月, 彭宇, 等. 航天器遥测数据异常检测综述[J]. 仪器仪表学报, 2016, 37(9): 1929-1945. https://www.cnki.com.cn/Article/CJFDTOTAL-YQXB201609003.htm

    PENG X Y, PANG J Y, PENG Y, et al. Review on anomaly detection of spacecraft telemetry data[J]. Chinese Journal of Scientific Instrument, 2016, 37(9): 1929-1945(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-YQXB201609003.htm
    [4]
    YANG T, CHEN B, GAO Y, et al. Data mining-based fault detection and prediction methods for in-orbit satellite[C]//IEEE International Conference on Measurement, Information and Control.Piscataway: IEEE Press, 2013: 805-808.
    [5]
    肇刚, 李言俊. 基于时间序列数据挖掘的航天器故障诊断方法[J]. 飞行器测控学报, 2010, 29(3): 1-5. https://www.cnki.com.cn/Article/CJFDTOTAL-FXCK201003002.htm

    ZHAO G, LI Y J. Spacecraft fault diagnosis method based on time series data mining[J]. Journal of Spacecraft TT & C Technology, 2010, 29(3): 1-5(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-FXCK201003002.htm
    [6]
    鲍军鹏, 杨科, 周静. 卫星时序数据挖掘节点级并行与优化方法[J]. 北京航空航天大学学报, 2018, 44(12): 2470-2478. doi: 10.13700/j.bh.1001-5965.2018.0334

    BAO J P, YANG K, ZHOU J. Node level parallel and optimization method of satellite time serial data mining[J]. Journal of Beijing University of Aeronautics and Astronautics, 2018, 44(12): 2470-2478(in Chinese). doi: 10.13700/j.bh.1001-5965.2018.0334
    [7]
    张弓, 翟君武, 杨海峰. 导航卫星遥测数据趋势预测技术研究[J]. 航天器工程, 2017, 3(3): 74-81. https://www.cnki.com.cn/Article/CJFDTOTAL-HTGC201703015.htm

    ZHANG G, ZHAI J W, YANG H F. Research on telemetry data tendency prognosis for navigation satellite[J]. Spacecraft Engineering, 2017, 3(3): 74-81(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HTGC201703015.htm
    [8]
    WAN Y, SI Y W. A hidden semi-Markov model for chart pattern matching in financial time series[J]. Soft Computing, 2017, 22(3): 1-20. doi: 10.1007/s00500-017-2703-7
    [9]
    MUEEN A, KEOGH E, YOUNG N E.Logical-Shapelets: An expressive primitive for time series classification[C]//ACM Sigkdd International Conference on Knowledge Discovery & Data Mining.New York: ACM, 2011: 1154-1162.
    [10]
    GAO Z K, CAI Q, YANG Y X, et al. Multiscale limited penetrable horizontal visibility graph for analyzing nonlinear time series[J]. Scientific Reports, 2016, 6(1): 35622. doi: 10.1038/srep35622
    [11]
    XI X, KEOGH E, SHELTON C, et al.Fast time series classification using numerosity reduction[C]//International Conference On Machine Learning, 2006: 1033-1040.
    [12]
    SAKOE H, CHIBA S. Dynamic programming algorithm optimization for spoken word recognition[J]. IEEE Transactions on Acoustics Speech and Signal Processing, 1978, 26(1): 43-49. doi: 10.1109/TASSP.1978.1163055
    [13]
    RAKESH A, CHRISTOS F, ARUN S.Efficient similarity search in sequence databases[C]//Foundations of Data Organization and Algorithms.Berlin: Springer, 1993: 69-84.
    [14]
    CHEN Q, CHEN L, LIAN X, et al.Indexable PLA for efficient similarity search[C]//VLDB Endowment in Proceedings of the 33rd International Conference on Very Large Data Bases.2007: 435-446.
    [15]
    LIN J, KEOGH E, LI W, et al. Experiencing SAX: A novel symbolic representation of time series[J]. Data Mining & Knowledge Discovery, 2007, 15(2): 107-144. http://nar.oxfordjournals.org/external-ref?access_num=10.1007/s10618-007-0064-z&link_type=DOI
    [16]
    KEOGH E, CHAKRABARTI K, PAZZANI M, et al. Dimensionality reduction for fast similarity search in large time series databases[J]. Knowledge & Information Systems, 2001, 3(3): 263-286. http://doi.ieeecomputersociety.org/resolve?ref_id=doi:10.1007/PL00011669&rfr_id=trans/tk/2008/12/ttk2008121616.htm
    [17]
    LIN J, KHADE R, LI Y. Rotation-invariant similarity in time series using bag-of-patterns representation[J]. Journal of Intelligent Information Systems, 2012, 39(2): 287-315. doi: 10.1007/s10844-012-0196-5
    [18]
    PHAM N D, LE Q L, DANG T K.Two novel adaptive symbolic representations for similarity search in time series databases[C]//Proceedings of the 12th Asia-Pacific Web Conference (APWeb).Piscataway: IEEE Press, 2010: 181-187.
    [19]
    LKHAGVA B, SUZUKI Y, KAWAGOE K.New time series data representation ESAX for financial applications[C]//International Conference on Data Engineering Workshops.Piscataway: IEEE Press, 2006: 17-22.
    [20]
    ZHANG K, LI Y, CHAI Y, et al.Trend-based symbolic aggregate approximation for time series representation[C]//2018 Chinese Control and Decision Conference (CCDC).Piscataway: IEEE Press, 2018: 2234-2240.
    [21]
    陈静. 卫星遥测数据的时间序列相似性度量方法研究[D]. 哈尔滨: 哈尔滨工业大学, 2015: 22-23.

    CHEN J.Similarity measure of time series for satellite telemetry data[D].Harbin: Harbin Institute of Technology, 2015: 22-23(in Chinese).
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)  / Tables(4)

    Article Metrics

    Article views(1240) PDF downloads(79) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return