Volume 47 Issue 9
Sep.  2021
Turn off MathJax
Article Contents
NIU Deqing, WU Youli, XU Yang, et al. Modeling of anti-jamming effectiveness evaluation of infrared air-to-air missile[J]. Journal of Beijing University of Aeronautics and Astronautics, 2021, 47(9): 1874-1883. doi: 10.13700/j.bh.1001-5965.2020.0334(in Chinese)
Citation: NIU Deqing, WU Youli, XU Yang, et al. Modeling of anti-jamming effectiveness evaluation of infrared air-to-air missile[J]. Journal of Beijing University of Aeronautics and Astronautics, 2021, 47(9): 1874-1883. doi: 10.13700/j.bh.1001-5965.2020.0334(in Chinese)

Modeling of anti-jamming effectiveness evaluation of infrared air-to-air missile

doi: 10.13700/j.bh.1001-5965.2020.0334
More Information
  • Corresponding author: WU Youli, E-mail: wadebae@163.com
  • Received Date: 13 Jul 2020
  • Accepted Date: 18 Sep 2020
  • Publish Date: 20 Sep 2021
  • In order to estimate the performance of infrared air-to-air missiles and improve its combat effectiveness, an overall valid evaluation of missiles' anti-jamming capability is required. However, due to the infinite number of countermeasure situations, most scholars currently study and analyze them based on typical countermeasure scenarios, which is inadequate. For this reason, the improved Latin hypercube sampling method was used to design sampling points in the whole range. Firstly, the infrared countermeasure principle and simulation system were explained and constructed, and the range and the type of input parameters were determined. Secondly, the Latin hypercube sampling method was improved and optimized, and the generated sampling results were discretized as needed to meet the needs of the decoy discrete parameter setting. Finally, the initial parameter combinations generated above were used to run the simulation system, and the obtained data were given to the random forest model as learning sample sets. After tuning the parameters and adjusting the loss matrix, the anti-jamming effectiveness evaluation model of the infrared air-to-air missiles was obtained and the prediction accuracy was 90.4%. Through simulation, the effectiveness of the model was verified under different IR countermeasures and different measurement errors..

     

  • loading
  • [1]
    黄鹤松, 童中翔, 李建勋, 等. 基于空战评估的红外空空导弹功能仿真[J]. 红外与激光工程, 2015, 44(3): 803-809. doi: 10.3969/j.issn.1007-2276.2015.03.003

    HUANG H S, TONG Z X, LI J X, et al. Functional simulation of infrared air-to-air missiles based on combat assessment[J]. Infrared and Laser Engineering, 2015, 44(3): 803-809(in Chinese). doi: 10.3969/j.issn.1007-2276.2015.03.003
    [2]
    牛得清, 伍友利, 徐洋, 等. 点源红外诱饵干扰下环境复杂度量化建模[J]. 红外与激光工程, 2020, 49(2): 211-219. https://www.cnki.com.cn/Article/CJFDTOTAL-HWYJ202002028.htm

    NIU D Q, WU Y L, XU Y, et al. Quantification modeling for environmental complexity under point source infrared decoy interference[J]. Infrared and Laser Engineering, 2020, 49(2): 211-219(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HWYJ202002028.htm
    [3]
    李慎波, 李韬锐, 童中翔, 等. 导弹战术参数对面源红外诱饵干扰效能影响[J]. 红外与激光工程, 2018, 47(7): 133-142. https://www.cnki.com.cn/Article/CJFDTOTAL-HWYJ201807019.htm

    LI S B, LI T R, TONG Z X, et al. Influence of tactical parameters of missile on jamming effectiveness of surface source infrared decoy[J]. Infrared and Laser Engineering, 2018, 47(7): 133-142(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HWYJ201807019.htm
    [4]
    徐洋, 方洋旺, 伍友利, 等. 红外诱饵干扰下导引头视线角速度跳变特征建模[J]. 红外与激光工程, 2019, 48(5): 110-120. https://www.cnki.com.cn/Article/CJFDTOTAL-HWYJ201905015.htm

    XU Y, FANG Y W, WU Y L, et al. Los-rate of seeker jump characteristic modelling under IR flare countermeasure[J]. Infrared and Laser Engineering, 2019, 48(5): 110-120(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HWYJ201905015.htm
    [5]
    唐善军, 王枫, 陈晓东. 红外导弹抗干扰能力指标体系和评估研究[J]. 上海航天, 2017, 34(4): 144-149. https://www.cnki.com.cn/Article/CJFDTOTAL-SHHT201704017.htm

    TANG S J, WANG F, CHEN X D. Anti-jamming performance index system and evaluation of infrared missile[J]. Aerospace Shanghai, 2017, 34(4): 144-149(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-SHHT201704017.htm
    [6]
    DE JONG W, DAM F A M, KUNZ G J, et al. IR seeker simulator and IR scene generation to evaluate IR decoy effectiveness[C]//European Symposium on Optics and Photonics for Defence and Security, 2004, 5615: 100-111.
    [7]
    SHEIKHOLESLAMI R, RAZAVI S. Progressive Latin hypercube sampling: An efficient approach for robust sampling-based analysis of environmental models[J]. Environmental Modelling & Software, 2017, 93: 109-126. http://www.onacademic.com/detail/journal_1000039864216710_7baf.html
    [8]
    MINASNY B, MCBRATNEY A B. A conditioned Latin hypercube method for sampling in the presence of ancillary information[J]. Computers & Geosciences, 2006, 32(9): 1378-1388. http://www.sciencedirect.com/science?_ob=ShoppingCartURL&_method=add&_eid=1-s2.0-S009830040500292X&originContentFamily=serial&_origin=article&_ts=1483837534&md5=0cfa6bbe96d2aeae4be74f09c998f510
    [9]
    VAN DAM E R, RENNEN G, HUSSLAGE B. Bounds for maximin Latin hypercube designs[J]. Operations Research, 2009, 57(3): 595-608. doi: 10.1287/opre.1080.0604
    [10]
    ZHANG J, XU J, JIA K, et al. Optimal sliced Latin hypercube designs with slices of arbitrary run sizes[J]. Mathematics, 2019, 7(9): 854. doi: 10.3390/math7090854
    [11]
    YUAN R, GUO B, LIU M Q. Flexible sliced Latin hypercube designs with slices of different sizes[J]. Statistical Papers, 2021, 62: 1117-1134. doi: 10.1007/s00362-019-01127-6
    [12]
    WESSING S, LÓPEZ-IBÁÑEZ M. Latin hypercube designs with branching and nested factors for initialization of automatic algorithm configuration[J]. Evolutionary Computation, 2019, 27(1): 129-145. doi: 10.1162/evco_a_00241
    [13]
    ZHAO Z W, YANG J M, HU Z Y, et al. A differential evolution algorithm with self-adaptive strategy and control parameters based on symmetric Latin hypercube design for unconstrained optimization problems[J]. European Journal of Operational Research, 2016, 250(1): 30-45. doi: 10.1016/j.ejor.2015.10.043
    [14]
    ZHOU X J, LIN D K J, HU X L, et al. Sequential Latin hypercube design with both space-filling and projective properties[J]. Quality and Reliability Engineering International, 2019, 35(6): 1941-1951. doi: 10.1002/qre.2485
    [15]
    LONG T, WU D, CHEN X, et al. A deterministic sequential maximin Latin hypercube design method using successive local enumeration for metamodel-based optimization[J]. Engineering Optimization, 2016, 48(6): 1019-1036. doi: 10.1080/0305215X.2015.1081518
    [16]
    叶鹏程, 潘光, 高山. 一种快速优化拉丁超立方试验设计方法[J]. 西北工业大学学报, 2019, 37(4): 714-723. doi: 10.3969/j.issn.1000-2758.2019.04.010

    YE P C, PAN G, GAO S. Sampling design method of fast optimal Latin hypercube[J]. Journal of Northwestern Polytechnical University, 2019, 37(4): 714-723(in Chinese). doi: 10.3969/j.issn.1000-2758.2019.04.010
    [17]
    张鑫, 吴海涛, 曹雪虹. Hadoop环境下基于随机森林的特征选择算法[J]. 计算机技术与发展, 2018, 28(7): 88-92. doi: 10.3969/j.issn.1673-629X.2018.07.019

    ZHANG X, WU H T, CAO X H. A feature selection algorithm based on random forest in Hadoop platform[J]. Computer Technology and Development, 2018, 28(7): 88-92(in Chinese). doi: 10.3969/j.issn.1673-629X.2018.07.019
    [18]
    李扬, 祁乐, 聂佩芸. 大规模数据的随机森林算法[J]. 统计与信息论坛, 2020, 35(6): 24-33. doi: 10.3969/j.issn.1007-3116.2020.06.004

    LI Y, QI L, NIE P Y. A distributed random forest algorithm for massive data[J]. Statistics & Information Forum, 2020, 35(6): 24-33(in Chinese). doi: 10.3969/j.issn.1007-3116.2020.06.004
    [19]
    兰巍, 贾素玲, 宋世民, 等. 基于随机森林的航天器电信号多分类识别方法[J]. 北京航空航天大学学报, 2017, 43(9): 1773-1778. doi: 10.13700/j.bh.1001-5965.2016.0661

    LAN W, JIA S L, SONG S M, et al. Multi-classification spacecraft electrical signal identification method based on random forest[J]. Journal of Beijing University of Aeronautics and Astronautics, 2017, 43(9): 1773-1778(in Chinese). doi: 10.13700/j.bh.1001-5965.2016.0661
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)  / Tables(4)

    Article Metrics

    Article views(578) PDF downloads(99) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return