Volume 47 Issue 9
Sep.  2021
Turn off MathJax
Article Contents
LI Yongqiang, LYU Weimin. Simulation analysis of PBGA packaged chips' thermal environment adaptability[J]. Journal of Beijing University of Aeronautics and Astronautics, 2021, 47(9): 1892-1899. doi: 10.13700/j.bh.1001-5965.2020.0339(in Chinese)
Citation: LI Yongqiang, LYU Weimin. Simulation analysis of PBGA packaged chips' thermal environment adaptability[J]. Journal of Beijing University of Aeronautics and Astronautics, 2021, 47(9): 1892-1899. doi: 10.13700/j.bh.1001-5965.2020.0339(in Chinese)

Simulation analysis of PBGA packaged chips' thermal environment adaptability

doi: 10.13700/j.bh.1001-5965.2020.0339
Funds:

National Natural Science Foundation of China 51975580

More Information
  • Corresponding author: LYU Weimin, E-mail: lyq281214@foxmail.com
  • Received Date: 13 Jul 2020
  • Accepted Date: 30 Oct 2020
  • Publish Date: 20 Sep 2021
  • In view of the fact that most Plastic Ball Grid Array (PBGA) packaged chips are only subjected to high and low temperature alternating tests in accordance with the US military MIL standard, resulting in a large deviation in predicted service life, this paper converts the microcomputer control chip mission time spectrum into ambient temperature parameters, and comprehensively considers the heat conduction and heat convection, so as to use icepak to complete the chip thermoelectric coupling simulation analysis, and use Transient Thermal and Transient Structural to complete the chip junction temperature acquisition and solder joint stress and strain calculation and solution. At the same time, the life of chip itself and the solder joint are predicted based on the Arrhenius model and the modified Coffin-Manson thermal fatigue model, so as to realize the quantitative analysis of its thermal environment adaptability. The simulation results show that the predicted life of the chip is about 6.26 years, and the life prediction deviation is about 13.4%, which complies with GJB 4239's single key environmental factor predicted life deviation standard and accurately reflects its thermal environment adaptability.

     

  • loading
  • [1]
    JAYESH S, ELIAS J. Experimental and finite element analysis on determining the fatigue life of PB-free solder joint (Sn-0.5Cu-3Bi-1Ag) used in electronic packages under harmonic loads[J]. International Journal of Modeling, Simulation, and Scientific Computing, 2020, 11(3): 2050020.
    [2]
    FAHIM A, HASAN K, AHMED S, et al. Mechanical behavior evolution of SAC305 lead free solder joints under thermal cycling[C]//2019 18th IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (ITherm). Piscataway: IEEE Press, 2019, 5: 734-744.
    [3]
    李志强, 马世辉, 飞尚才, 等. 热冲击条件下倒装焊点失效的有限元模拟[J]. 热加工工艺, 2018, 47(19): 233-236. https://www.cnki.com.cn/Article/CJFDTOTAL-SJGY201819064.htm

    LI Z Q, MA S H, FEI S C, et al. Finite element simulation of failure of flip chip solder joint under thermal shock[J]. Hot Working Technology, 2018, 47(19): 233-236(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-SJGY201819064.htm
    [4]
    U.S. Department of Defense. Reliability prediction of electronic equipment: MIL-HDBK-217F[S]. Washingtion, D.C. : U.S. Department of Defense, 2015: 48-53.
    [5]
    陈镜波, 何小琦, 章晓文. 厚膜DC/DC电源VDMOS器件失效机理及研究现状[J]. 半导体技术, 2010, 35(2): 176-180. doi: 10.3969/j.issn.1003-353x.2010.02.020

    CHEN J B, HE X Q, ZHANG X W. Progress and failure mechanism of VDMOS device in DC/DC power supply[J]. Semiconductor Technology, 2010, 35(2): 176-180(in Chinese). doi: 10.3969/j.issn.1003-353x.2010.02.020
    [6]
    KARVAN P, VARVANI-FARAHANI A. Viscoplastic ratcheting response of materials under step-loading conditions at various cyclic stress levels[J]. Journal of Materials Engineering and Performance, 2020, 29(2): 1124-1134. doi: 10.1007/s11665-020-04628-w
    [7]
    焦鸿浩. 多物理场载荷下电子封装板级焊点仿真研究[D]. 哈尔滨: 哈尔滨理工大学, 2019: 25-32.

    JIAO H H. Simulation research on electronic package board level solder joint under multiphysics load[D]. Harbin: Harbin University of Science and Technology, 2019: 25-32(in Chinese).
    [8]
    TSAI S T, LIN C Y, WU S M, et al. Analyses and statistics of the electrical fail for flip chip packaging by using ANSYS simulation software and really underfill materials[J]. Microsystem Technologies, 2018, 24(10): 4017-4024. doi: 10.1007/s00542-017-3605-4
    [9]
    LONG X, CHEN Z B, WANG W J, et al. Parameterized Anand constitutive model under a wide range of temperature and strain rate: Experimental and theoretical studies[J]. Journal of Materials Science, 2020, 55(24): 10811-10823. doi: 10.1007/s10853-020-04689-1
    [10]
    田野. 热冲击条件下倒装组装微焊点的可靠性-应力应变[J]. 焊接学报, 2016, 37(8): 67-70. https://www.cnki.com.cn/Article/CJFDTOTAL-HJXB201608016.htm

    TIAN Y. Micro-joint reliability of flip chip assembly under thermal shock-strain and stress[J]. Transactions of the China Welding Institution, 2016, 37(8): 67-70(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HJXB201608016.htm
    [11]
    ENJU J, TRUNG N H, FADZLI S K, et al. Design and fabrication of on-chip micro-thermoelectric cooler based on electrodeposition process[J]. IEEJ Transactions on Sensors and Micromachines, 2020, 140(1): 18-23. doi: 10.1541/ieejsmas.140.18
    [12]
    应保胜, 刘冬冬, 吴华伟, 等. 基于Icepak的多种间隙下IGBT散热器仿真与研究[J]. 重庆交通大学学报(自然科学版), 2020, 39(2): 132-137. https://www.cnki.com.cn/Article/CJFDTOTAL-CQJT202002020.htm

    YING B S, LIU D D, WU H W, et al. Simulation and research of IGBT radiator under multiple gaps based on Icepak[J]. Journal of Chongqing Jiaotong University (Natural Science), 2020, 39(2): 132-137(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-CQJT202002020.htm
    [13]
    连兴峰, 苏继龙. 封装热效应及粘结层对微芯片应力和应变的影响[J]. 机电技术, 2012, 35(6): 33-36. https://www.cnki.com.cn/Article/CJFDTOTAL-JDJS201206013.htm

    LIAN X F, SU J L. The influence of package thermal effect and adhesive layer on microchip stress and strain[J]. Mechanical & Electrical Technology, 2012, 35(6): 33-36(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JDJS201206013.htm
    [14]
    朱楠. 功率半导体模块电、热特性分析及应用[D]. 杭州: 浙江大学, 2018: 32-35.

    ZHU N. Electrical and thermal analysis and applications of power semiconductor modules[D]. Hangzhou: Zhejiang University, 2018: 32-35(in Chinese).
    [15]
    SOMAN V, VENKATADRI V, POLIKS M D. Understanding the effects of process parameters to compensate for substrate warpage in chip on flex (CoF) assembly using conventional reflow[J]. International Symposium on Microelectronics, 2019, 2019(1): 428-433. doi: 10.4071/2380-4505-2019.1.000428
    [16]
    TAN S H, HAN J, WANG Y, et al. A method to determine the slip systems in BGA lead-free solder joints during thermal fatigue[J]. Journal of Materials Science: Materials in Electronics, 2018, 29(9): 7501-7509. doi: 10.1007/s10854-018-8741-9
    [17]
    田野, 任宁. 热冲击条件下倒装组装微焊点的可靠性-寿命预测[J]. 焊接学报, 2016, 37(2): 51-54. https://www.cnki.com.cn/Article/CJFDTOTAL-HJXB201602013.htm

    TIAN Y, REN N. Prediction of reliability of solder joint for fine pitch flip chip assemblies under thermal shock[J]. Transactions of the China Welding Institution, 2016, 37(2): 51-54(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HJXB201602013.htm
    [18]
    吕卫民, 李永强. 电子功能部件环境适应性试验优化设计[J]. 系统工程与电子技术, 2020, 42(7): 1630-1636. https://www.cnki.com.cn/Article/CJFDTOTAL-XTYD202007028.htm

    LYU W M, LI Y Q. Electronic functional equipment environmental adaptability test optimal design[J]. Systems Engineering and Electronics, 2020, 42(7): 1630-1636(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-XTYD202007028.htm
    [19]
    LI J L, TIAN Y B, WANG D P. Change-point detection of failure mechanism for electronic devices based on Arrhenius model[J]. Applied Mathematical Modelling, 2020, 83: 46-58. http://www.sciencedirect.com/science/article/pii/S0307904X20300962
    [20]
    郭小辉. 无铅钎料在PCB再流焊中翘曲的模拟仿真[D]. 天津: 天津大学, 2007: 15-18.

    GUO X H. Simulation for lead-free solder in the reflow welding of PCB warpage deformation[D]. Tianjin: Tianjin University, 2007: 15-18(in Chinese).
    [21]
    LIBOT J B, ALEXIS J, DALVERNY O, et al. Experimental SAC305 shear stress-strain hysteresis loop construction using Hall's one-dimensional model based on strain gages measurements[J]. Journal of Electronic Packaging, 2019, 141(2): 136-142. http://www.onacademic.com/detail/journal_1000041629555099_fda1.html
    [22]
    中国人民解放军总装备部. 装备环境工程通用要求: GJB 4239-2001[S]. 北京: 中国人民解放军总装备部, 2001: 10-13.

    Chinese People's Liberation Army General Armament Department. General requirements for equipment environmental engineering: GJB 4239-2001[S]. Beijing: Chinese People's Liberation Army General Armament Department, 2001: 10-13(in Chinese).
    [23]
    张卫. 考虑多失效机理耦合的电子产品寿命预测方法研究[D]. 长沙: 国防科学技术大学, 2014: 26-35.

    ZHANG W. Research on life prediction method of electronic product combined multiple-failure mechanism[D]. Changsha: National University of Defense Technology, 2014: 26-35(in Chinese).
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(11)  / Tables(5)

    Article Metrics

    Article views(531) PDF downloads(101) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return