Fan Yuezu, Zhang Yinan, Ma Haokai, et al. Application of the hybrid BP/GA algorithm in simple integrated navigation system[J]. Journal of Beijing University of Aeronautics and Astronautics, 2005, 31(05): 535-538. (in Chinese)
Citation: LI Ruiguang, DUAN Pengyu, SHEN Meng, et al. Traffic classification algorithm of Internet of things devices based on random forest[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(2): 233-239. doi: 10.13700/j.bh.1001-5965.2020.0383(in Chinese)

Traffic classification algorithm of Internet of things devices based on random forest

doi: 10.13700/j.bh.1001-5965.2020.0383
More Information
  • Corresponding author: ZHU Liehuang, E-mail: liehuangz@bit.edu.cn
  • Received Date: 03 Aug 2020
  • Accepted Date: 05 Sep 2020
  • Publish Date: 20 Feb 2022
  • The traffic classification of Internet of things (IoT) devices is very important to the management of cyberspace assets. The classification technology based on statistical identification is a hot spot in current academic research. The previous algorithms were mainly based on the flow information to set up the feature vectors, but lesson the packet information. In this paper, we improve the traffic classification algorithm of IoT devices based on random forest. We set up the feature vectors with both the flow information and the flow's packet information. The experimental results show that, compared with previous algorithms, the classification accuracy of the proposed algorithm increases from 56% to 82%, the recall rate improves from 47% to 67%, the F1 score increases from 0.43 to 0.74, and the confusion matrix correlation is also significantly improved. As a result, the proposed algorithm has a better classification effect than previous ones.

     

  • [1]
    黄凯奇, 陈晓棠, 康运锋, 等. 智能视频监控技术综述[J]. 计算机学报, 2015, 38(6): 1093-1118.

    HUANG K Q, CHEN X T, KANG Y F, et al. Intelligent visual surveillance: A review[J]. Chinese Journal of Computers, 2015, 38(6): 1093-1118(in Chinese).
    [2]
    FENG X, LI Q, HAN Q, et al. Identification of visible industrial control devices at Internet scale[C]//2016 IEEE International Conference on Communications. Piscataway: IEEE Press, 2016: 1-6.
    [3]
    LI Q, FENG X, WANG H, et al. Automatically discovering surveillance devices in the cyberspace[C]//The 8th ACM. New York: ACM, 2017: 331-342.
    [4]
    FENG X, LI Q, WANG H, et al. Acquisitional rule-based engine for discovering Internet-of-thing devices[C]//27th USENIX Security Symposium, 2018: 327-341.
    [5]
    LEONARD D, LOGUINOV D. Demystifying service discovery: Implementing an Internet-wide scanner[C]//Proceedings of the 10th ACM SIGCOMM Conference on Internet Measurement 2010. New York: ACM, 2010: 109-122.
    [6]
    KOHNO T, BROIDO A, CLAFFY K C. Remote physical device fingerprinting[J]. IEEE Transactions on Dependable and Secure Computing, 2005, 2(2): 93-108. doi: 10.1109/TDSC.2005.26
    [7]
    ANEJA S, ANEJA N, ISLAM M S. IoT device fingerprint using deep learning[C]//2018 IEEE International Conference on Internet of Things and Intelligence System. Piscataway: IEEE Press, 2018: 174-179.
    [8]
    HUSÁK M, ERMÁK M, JIRSÍK T, et al. HTTPS traffic analysis and client identification using passive SSL/TLS fingerprinting[J]. EURASIP Journal on Information Security, 2016, 2016(1): 1-14. doi: 10.1186/s13635-015-0028-6
    [9]
    ARUNAN S, HASSAN H G, FRANCO L, et al. Classifying IoT devices in smart environments using network traffic characteristics[J]. IEEE Transactions on Mobile Computing, 2019, 18(8): 1745-1759. doi: 10.1109/TMC.2018.2866249
    [10]
    MSADEK N, SOUA R, ENGEL T. IoT device fingerprinting: Machine learning based encrypted traffic analysis[C]//2019 IEEE Wireless Communications and Networking Conference (WCNC). Piscataway: IEEE Press, 2019: 1-8.
    [11]
    YAO H, GAO P, WANG J, et al. Capsule network assisted IoT traffic classification mechanism for smart cities[J]. IEEE Internet of Things Journal, 2019, 6(5): 7515-7525. doi: 10.1109/JIOT.2019.2901348
    [12]
    DESAI B A, DIVAKARAN D M, NEVAT I, et al. A feature-ranking framework for IoT device classification[C]//International Conference on Communication Systems & Networks, 2019: 64-71.
    [13]
    MEIDAN Y, BOHADANA M, SHABTAI A, et al. ProfilIoT: A machine learning approach for IoT device identification based on network traffic analysis[C]//Proceedings of the Symposium on Applied Computing, 2017: 506-509.
    [14]
    SHAHID M R, BLANC G, ZHANG Z, et al. IoT devices recognition through network traffic analysis[C]//IEEE International Conference on Big Data. Piscataway: IEEE Press, 2018: 5187-5192.
    [15]
    SIVANATHAN A, SHERRATT D, GHARAKHEILI H H, et al. Characterizing and classifying IoT traffic in smart cities and campuses[C]//IEEE INFOCOM 2017-IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS). Piscataway: IEEE Press, 2017: 559-564.
  • Relative Articles

    [1]HOU Z Q,DAI N,CHENG M J,et al. Two-branch real-time semantic segmentation algorithm based on spatial information guidance[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(1):19-29 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0980.
    [2]XIAHOU Chao, ZHOU Hao, CHEN Wanchun. Cooperative Optimal Analytical Guidance Method Considering Time-Varying Speed and Information Sharing[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2024.0707
    [3]LI W,CHENG X,LI Y J. Integrated security control of industrial cyber-physical systems based on new type ADETCS[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(9):2704-2716 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0734.
    [4]ZHAO W,LIU L,WANG K P,et al. Multimodal bidirectional information enhancement network for RGBT tracking[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(2):596-605 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0395.
    [5]JI X,WU T X,YU T,et al. Power text information extraction based on multi-task learning[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(8):2461-2469 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0683.
    [6]WU Kaijun, PU Zhuo. Object Detection for UAV Viewpoint Images based on Feature Information Complementation and Enhancement[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2024.0190
    [7]ZHENG Shen-hai, LIU Xiao-xuan, WANG Rui-hao. Multi-organ Detection Method in Abdominal CT Images Based on Deep Differentiable Random Forest[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2023.0769
    [8]HE Q L,WANG L H,CHEN Y J,et al. An automatic and real-time detection method of IoT in-the-wild vulnerability attack[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(7):2195-2205 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0592.
    [9]DU Xiao-xin, HAO Tian-ru, WANG Bo, WANG Zhen-fei, ZHANG Jian-fei, JIN Mei. Artificial gorilla troops optimizer based on double random disturbance and its application of engineering problem[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2023.0404
    [10]ZHANG N,CHENG D Q,KOU Q Q,et al. Person re-identification based on random occlusion and multi-granularity feature fusion[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(12):3511-3519 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0091.
    [11]DAI P Z,LIU X,ZHANG X,et al. An iterative pedestrian detection method sensitive to historical information features[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(9):2493-2500 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0665.
    [12]HUANG Jun, FAN Hao-dong, HONG Xu-dong, LI Xue. Semantic information guided multi-label image classification[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2023.0382
    [13]WANG F F,TANG S J,SUN X Y,et al. Remaining useful life prediction based on multi source information with considering random effects[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(11):3075-3085 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0782.
    [14]WANG J H,ZHOU D Y,CAO J,et al. Fault diagnosis of ball mill rolling bearing based on multi-feature fusion and RF[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(12):3253-3264 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0069.
    [15]ZHANG P,ZHOU Q X,YU H Q,et al. Fast detection method of mental fatigue based on EEG signal characteristics[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(1):145-154 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0211.
    [16]HU Haimiao, SHEN Liuqing, GAO Likun, LI Mingzhu. Object detection algorithm guided by motion information[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(9): 1710-1720. doi: 10.13700/j.bh.1001-5965.2022.0291
    [17]DONG Zeshu, YUAN Feiniu, XIA Xue. Improved spatial and channel information based global smoke attention network[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(8): 1471-1479. doi: 10.13700/j.bh.1001-5965.2021.0549
    [18]CHEN Weijing, WANG Weiying, JIN Qin. Image difference caption generation with text information assistance[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(8): 1436-1444. doi: 10.13700/j.bh.1001-5965.2021.0526
    [19]XIE Xiangying, LAI Guangzhi, NA Zhixiong, LUO Xin, WANG Dong. Occlusion recognition algorithm based on multi-resolution feature auto-selection[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(7): 1154-1163. doi: 10.13700/j.bh.1001-5965.2021.0289
    [20]ZHENG Yuxiang, HAO Pengyi, WU Dong'en, BAI Cong. Medical image segmentation based on multi-layer features and spatial information distillation[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(8): 1409-1417. doi: 10.13700/j.bh.1001-5965.2021.0504
  • Cited by

    Periodical cited type(8)

    1. 陈钊渊,吴优,张娜,马超,王国仕,罗林波. 物联网恶意流量检测下基于改进Apriori算法的关联数据回溯分析. 自动化与仪器仪表. 2024(01): 52-55 .
    2. 曹伟康,林宏刚. 基于加权特征融合的物联网设备识别方法. 计算机科学. 2024(S2): 885-893 .
    3. Yu Zhang,Bei Gong,Qian Wang. BLS-identification: A device fingerprint classification mechanism based on broad learning for Internet of Things. Digital Communications and Networks. 2024(03): 728-739 .
    4. 李志华,王志豪. 基于LCNN和LSTM混合结构的物联网设备识别方法. 信息网络安全. 2023(06): 43-54 .
    5. 余长宏,陆雅,王海鑫,高明. 基于滑动时间窗的物联网设备流量分类算法. 计算机工程. 2023(07): 259-268 .
    6. 崔蕾,周湘贞,王枚. 基于区块链和雾计算的IoT轻量级身份验证和访问控制. 贵阳学院学报(自然科学版). 2023(03): 33-39 .
    7. 师小龙,陈浩林,王佳康,尹昱成,徐一楠,台永丰,杨睿,李燕飞. 基于随机森林的轨道交通成本关键要素辨识方法. 中国高新科技. 2022(06): 76-78 .
    8. 赵季红,乔琳琳,王颖. 基于多任务和卷积神经网络的业务识别算法. 西安邮电大学学报. 2021(01): 1-6 .

    Other cited types(13)

  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(2)  / Tables(5)

    Article Metrics

    Article views(922) PDF downloads(241) Cited by(21)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return