Volume 48 Issue 2
Feb.  2022
Turn off MathJax
Article Contents
WANG Zhihua, WANG Haofan, CHENG Manmanet al. Fuzzing testing sample set optimization scheme based on heuristic genetic algorithm[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(2): 217-224. doi: 10.13700/j.bh.1001-5965.2020.0422(in Chinese)
Citation: WANG Zhihua, WANG Haofan, CHENG Manmanet al. Fuzzing testing sample set optimization scheme based on heuristic genetic algorithm[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(2): 217-224. doi: 10.13700/j.bh.1001-5965.2020.0422(in Chinese)

Fuzzing testing sample set optimization scheme based on heuristic genetic algorithm

doi: 10.13700/j.bh.1001-5965.2020.0422
Funds:

Henan Provincial Department of Science and Technology Project 212102210408

Henan Provincial Key Scientific Research Project 22A520041

More Information
  • Corresponding author: WANG Zhihua, E-mail: zhwang@zzu.edu.cn
  • Received Date: 12 Aug 2020
  • Accepted Date: 25 Sep 2020
  • Publish Date: 20 Feb 2022
  • As the most effective method of vulnerability mining at present, fuzzy testing not only is more capable of dealing with complex programs than other vulnerability mining techniques, but also has strong scalability. In the fuzzy testing with a large number of data, the input sample set has the problems of low quality, high redundancy and weak availability. Therefore, we study the input sample set of fuzzy testing, and propose a heuristic genetic algorithm. With the help of the 0-1 matrix, the execution path of the sample is selected and compressed through the heuristic genetic algorithm, so as to obtain the smallest sample set that takes into account the sample quality after optimization, thereby speeding up the efficiency of fuzzy testing. The experimental results show that, without loss, the fuzzy testing time after the sample set is simplified is reduced by 22% compared with that before the sample set is simplified, and the compression rate is increased by about 40% compared with the traditional scheme.

     

  • loading
  • [1]
    邹权臣, 张涛, 吴润浦, 等. 从自动化到智能化: 软件漏洞挖掘技术进展[J]. 清华大学学报(自然科学版), 2018, 58(12): 1079-1094.

    ZOU Q C, ZHANG T, WU R P, et al. From automation to intelligence: Progress in software vulnerability mining technology[J]. Journal of Tsinghua University (Natural Science Edition), 2015, 58(12): 1079-1094(in Chinese).
    [2]
    张雄, 李舟军. 模糊测试技术研究综述[J]. 计算机科学, 2016, 43(5): 1-8.

    ZHANG X, LI Z J. Research review of fuzzy testing technology[J]. Computer Science, 2016, 43(5): 1-8(in Chinese).
    [3]
    马金鑫, 张涛, 李舟军, 等. Fuzzing过程中的若干优化方法[J]. 清华大学学报(自然科学版), 2016, 56(5): 478-483.

    MA J X, ZHANG T, LI Z J, et al. Optimization methods in the Fuzzing process[J]. Journal of Tsinghua University (Natural Science Edition), 2016, 56(5): 478-483(in Chinese).
    [4]
    BHME M, PHAM V T, ROYCHOUDHURY A. Coverage-based greybox fuzzing as Markov chain[C]//Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications Security. New York: ACM, 2016: 1032-1043.
    [5]
    BHME M, PHAM V T, NGUYEN M D, et al. Directed greybox fuzzing[C]//Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications Security. New York: ACM, 2017: 2329-2344.
    [6]
    WANG S, NAM J, TAN L. QTEP: Quality-aware test case prioritization[C]//Proceedings of the 201711th Joint Meeting on Foundations of Software Engineering. New York: ACM, 2017: 523-534.
    [7]
    唐枭. 基于动态污点分析的反馈式模糊测试改进方法[J]. 信息安全研究, 2019, 5(2): 145-151. doi: 10.3969/j.issn.2096-1057.2019.02.006

    TANG X. Improved method of feedback fuzzy test based on dynamic stain analysis[J]. Information Security Research, 2019, 5(2): 145-151(in Chinese). doi: 10.3969/j.issn.2096-1057.2019.02.006
    [8]
    冯智莉, 易国洪, 李普山, 等. 并行化遗传算法研究综述[J]. 计算机应用与软件, 2018, 35(11): 1-7.

    FENG Z L, YI G H, LI P S, et al. Research review of parallel genetic algorithm[J]. Computer Applications and Software, 2018, 35(11): 1-7(in Chinese).
    [9]
    林耿, 关健. 自适应memetic算法求解集合覆盖问题[J]. 浙江大学学报(理学版), 2016, 43(2): 168-174.

    LIN G, GUAN J. Adaptive memetic algorithm for solving set coverage problem[J]. Journal of Zhejiang University (Science Edition), 2016, 43(2): 168-174(in Chinese).
    [10]
    ALYAHYA K, ROWE J E. Landscape analysis of a class of NP-hard binary packing problems[J]. Evolutionary Computation, 2019, 27(1): 47-73. doi: 10.1162/evco_a_00237
    [11]
    赵颖闻, 王峻, 郭茂祖, 等. 基于0-1矩阵分解的蛋白质功能预测[J]. 中国科学: 信息科学, 2019, 49(9): 1159-1174.

    ZHAO Y W, WANG J, GUO M Z, et al. Prediction of protein function based on 0-1 matrix decomposition[J]. Scientia Sinica: Information Science, 2019, 49(9): 1159-1174(in Chinese).
    [12]
    张瑜, 娄卉芳, 文良浩, 等. 一种改进的遗传算法交叉策略[J]. 湖南科技大学学报(自然科学版), 2012, 27(1): 94-97.

    ZHANG Y, LOU H F, WEN L H, et al. An improved genetic algorithm crossover strategy[J]. Journal of Hunan University of Science and Technology (Natural Science Edition), 2012, 27(1): 94-97(in Chinese).
    [13]
    王春阳, 赵玉庆, 谢金兴, 等. 遗传算法变异算子的改进[J]. 山东农业大学学报(自然科学版), 2019, 50(5): 898-901. doi: 10.3969/j.issn.1000-2324.2019.05.036

    WANG C Y, ZHAO Y Q, XIE J X, et al. Improvement of genetic algorithm mutation operator[J]. Journal of Shandong Agricultural University (Natural Science Edition), 2019, 50(5): 898-901(in Chinese). doi: 10.3969/j.issn.1000-2324.2019.05.036
    [14]
    伊胜伟, 张翀斌, 谢丰, 等. 基于Peach的工业控制网络协议安全分析[J]. 清华大学学报(自然科学版), 2017, 57(1): 50-54.

    YI S W, ZHANG C B, XIE F, et al. Security analysis of industrial control network protocol based on Peach[J]. Journal of Tsinghua University (Natural Science Edition), 2017, 57(1): 50-54(in Chinese).
    [15]
    李谦, 刘嘉勇. 基于Fuzzing技术的样本集精简优化研究[J]. 网络安全技术与应用, 2017(1): 62-64. doi: 10.3969/j.issn.1009-6833.2017.01.039

    LI Q, LIU J Y. Research on simplification and optimization of sample set based on Fuzzing technology[J]. Network Security Technology and Application, 2017(1): 62-64(in Chinese). doi: 10.3969/j.issn.1009-6833.2017.01.039
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(4)  / Tables(4)

    Article Metrics

    Article views(535) PDF downloads(79) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return