Gao Yuanyang, Qian Yonggang, Wang Wenjieet al. Game behaviors and efficiency analysis under Chinese pricing system of military aviation products[J]. Journal of Beijing University of Aeronautics and Astronautics, 2006, 32(05): 536-539. (in Chinese)
Citation: WANG Ershen, SUN Caimiao, TONG Gang, et al. Optimization method of multi-constellation GNSS vertical protection level based on particle swarm optimization algorithm[J]. Journal of Beijing University of Aeronautics and Astronautics, 2021, 47(11): 2175-2180. doi: 10.13700/j.bh.1001-5965.2020.0431(in Chinese)

Optimization method of multi-constellation GNSS vertical protection level based on particle swarm optimization algorithm

doi: 10.13700/j.bh.1001-5965.2020.0431
Funds:

National Natural Science Foundation of China 62173237

National Natural Science Foundation of China 61703287

Key R & D Projects of Liaoning Province 2020JH2/10100045

Revitalization Talent Project of Liaoning Province XLYC1907022

High-Level Innovation Talent Project of Shenyang RC190030

More Information
  • Corresponding author: WANG Ershen, E-mail: wanges_2016@126.com
  • Received Date: 13 Aug 2020
  • Accepted Date: 27 Sep 2020
  • Publish Date: 20 Nov 2021
  • Aimed at the conservative problem of integrity risk and continuity risk allocation in the traditional Advanced Receiver Autonomous Integrity Monitoring (ARAIM) algorithm, a new integrity risk and continuity risk allocation method based on Particle Swarm Optimization (PSO) algorithm is proposed. This method uses different allocation strategies as different particles in the algorithm, and selects the weighted sum of the vertical protection levels corresponding to different fault subsets as the fitness function. Each particle updates its position and speed based on the principle of particle swarm optimization until the conditions are met, and then the optimized allocation strategy and the corresponding vertical protection level are obtained. The algorithm is verified through dual constellations and compared with traditional methods. The results show that the integrity risk and continuity risk allocation strategy based on the particle swarm optimization algorithm optimizes the vertical protection level and improves the ARAIM global availability.

     

  • [1]
    刘金鑫, 滕继涛, 李锐, 等. 基于子集包含减少ARAIM子集数量的方法[J]. 北京航空航天大学学报, 2020, 46(8): 1592-1660. doi: 10.13700/j.bh.1001-5965.2019.0517

    LIU J X, TENG J T, LI R, et al. Method for reducing the number of ARAIM subsets[J]. Journal of Beijing University of Aeronautics and Astronautics, 2020, 46(8): 1592-1660(in Chinese). doi: 10.13700/j.bh.1001-5965.2019.0517
    [2]
    BLANCH J, WALTER T, ENGE P, et al. Advanced RAIM user algorithm description: Integrity support message processing, fault detection, exclusion, and protection level calculation[C]//ION Global Navigation Satellite Systems Conference, 2012: 2828-2849.
    [3]
    MENG Q, LIU J Y, ZENG Q H, et al. Improved ARAIM fault modes determination scheme based on feedback structure with probability accumulation[J]. GPS Solutions, 2019, 23(1): 16. doi: 10.1007/s10291-018-0809-8
    [4]
    王尔申, 杨迪, 宏晨, 等. ARAIM技术研究进展[J]. 电信科学, 2019, 35(8): 128-138.

    WANG E S, YANG D, HONG C, et al. Research progress of ARAIM technology[J]. Telecommunications Science, 2019, 35(8): 128-138(in Chinese).
    [5]
    JOERGER M, PERVAN B. Multi-constellation ARAIM exploiting satellite motion[J]. Navigation, 2020, 67(2): 235-253. doi: 10.1002/navi.334
    [6]
    ZHAI Y W, ZHAN X Q, CHANG J, et al. ARAIM with more than two constellations[C]//ION 2019 Pacific PNT Meeting, 2019: 925-941.
    [7]
    LUO S L, WANG L, TU R, et al. Satellite selection methods for multi-constellation advanced RAIM[J]. Advances in Space Research, 2020, 65(5): 1503-1517. doi: 10.1016/j.asr.2019.12.015
    [8]
    BANG E, MILNER C, MACABIAU C, et al. ARAIM temporal correlation effect on PHMI[C]//International Technical Meeting of the Satellite Division of the Institute of Navigation, 2018: 2682-2694.
    [9]
    SUN X, XU L, JI Y, et al. An extremum approximation ARAIM algorithm based on GPS and BDS[J]. IEEE Access, 2020, 8: 30027-30036. doi: 10.1109/ACCESS.2020.2972766
    [10]
    SUN Y, WANG T S, WANG Z P, et al. Optimal risk allocation for BDS/GPS advanced receiver autonomous integrity monitoring[C]//Proceedings of the 2015 International Technical Meeting of the Institute of Navigation, 2015: 687-695.
    [11]
    BLANCH J, WALTER T, ENGE P. RAIM with optimal integrity and continuity allocations under multiple failures[J]. IEEE Transactions on Aerospace and Electronic Systems, 2010, 46(3): 1235-1247. doi: 10.1109/TAES.2010.5545186
    [12]
    EL-MOWAFY A, YANG C. Limited sensitivity analysis of ARAIM availability for LPV-200 over Australia using real data[J]. Advances in Space Research, 2016, 57(2): 659-670. doi: 10.1016/j.asr.2015.10.046
    [13]
    Working Group C, EU-U.S. ARAIM technical subgroup milestone 3 report[EB/OL]. (2016-02-25)[2019-09-20].
    [14]
    Working Group C, EU-U.S. ARAIM concept of operation[EB/OL]. [2019-09-20].
    [15]
    刘若辰, 李建霞, 刘静, 等. 动态多目标优化研究综述[J]. 计算机学报, 2020, 43(7): 1246-1278.

    LIU R C, LI J X, LIU J, et al. A survey on dynamic multi-objective optimization[J]. Chinese Journal of Computers, 2020, 43(7): 1246-1278(in Chinese).
    [16]
    RUSSELL C E, SHI Y. Particle swarm optimization: Developments, applications and resources[C]//Congress on Evolutionary Computation, 2002: 81-86.
  • Relative Articles

    [1]DOU L,LI X K,ZHANG H L,et al. Fixed time trajectory tracking control of forward-tilting morphing aerospace vehicle[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(3):1005-1017 (in Chinese). doi: 10.13700/j.bh.1001-5965.2023.0152.
    [2]WEI H,CAI G B,FAN Y H,et al. Online guidance for hypersonic vehicles in glide-reentry segment[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(1):183-192 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0965.
    [3]LIU X L,LI J K. Iterative learning control of electric load simulator of aircraft steering gear[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(9):2727-2738 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0711.
    [4]YANG F,LIN M Y,HU Z M,et al. Prediction method of aero-heating of hypersonic vehicle bi-curvature leading edge based on machine learning[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(9):2826-2834 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0746.
    [5]MENG Z P,YANG L Q,WANG B,et al. ADRC design for folding wing vehicles based on improved equilibrium optimization algorithm[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(8):2449-2460 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0698.
    [6]WANG H B,HE H,ZOU H J,et al. Nonlinear backstepping control of special EHA for rail grinding vehicles[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(8):2439-2448 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0681.
    [7]QUAN Q,CHEN L. Control of non-affine nonlinear systems: A survey[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(8):2367-2381 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0642.
    [8]GE Jian-hao, GUO Jie, WANG Hao-ning, ZHANG Bao-chao, WAN Yang-yang, TANG Sheng-jing. Adaptive model predictive control for hypersonic morphing gliding vehicle[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2024.0081
    [9]ZHANG X,LU X W,LAI L J. Large-stroke microposition stage driven by reluctance actuator and its trajectory tracking control[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(9):2852-2861 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0702.
    [10]ZHANG Q C,WANG L,XI J X,et al. Tracking control of unmanned aerial vehicle swarms with leader-following double formation[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(7):2331-2342 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0607.
    [11]CHEN Qing-yang, XIN Hong-bo, LU Ya-fei, WANG Peng, WANG Yu-jie, ZHENG Jun-fei. Ground Taxiing Lateral Deviation Correction Control for High Subsonic UAVs[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2023.0635
    [12]YANG B,LIU C F,YU H,et al. A method for analyzing angle measurement error of radar on hypersonic vehicle[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(12):3666-3676 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0879.
    [13]JIN L,YANG S L. Fault-tolerant control of spacecraft attitude with prescribed performance based on reinforcement learning[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(8):2404-2412 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0666.
    [14]CAI H,SHI P. Attitude control method for flexible spacecraft based on LPV model[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(12):3921-3929 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0880.
    [15]LIU S S,LUO L,HAN Q H,et al. Study on lateral-directional stability of a practical high lift-to-drag ratio hypersonic vehicle with momentum lift augmentation[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(11):3010-3021 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0035.
    [16]TANG Y C,ZHU Q H,LIU F C,et al. Design of robust controller for single outrigger of vibration active isolation platform based on LPV[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(7):1796-1801 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0513.
    [17]DUAN B,YANG S,LI A J. Design of LPV control law for unmanned helicopter[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(4):879-890 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0340.
    [18]ZHAO J Y,HU J,YAO J Y,et al. EHA fault diagnosis and fault tolerant control based on adaptive neural network robust observer[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(5):1209-1221 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0416.
    [19]YANG Yuchen, ZHANG Zenghui, YAN Jianing, ZHANG Jing, YANG Lingyu. Dual-channel control of hypersonic flight vehicles based on bounded perturbation analysis of eigenvalues[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(10): 2020-2030. doi: 10.13700/j.bh.1001-5965.2021.0053
    [20]PENG Weishi. Evaluation of high hitting accuracy performance of hypersonic vehicle[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(11): 2130-2137. doi: 10.13700/j.bh.1001-5965.2021.0094
  • Cited by

    Periodical cited type(15)

    1. 张飞桥,张亦驰,严皓. 基于改进卷积网络的终端区4D航迹预测与冲突检测. 科学技术与工程. 2024(05): 2150-2157 .
    2. 吴明功,毕可心,温祥西,孙继昆. 基于飞行冲突网络最优支配集的冲突调配策略. 北京航空航天大学学报. 2023(02): 242-253 . 本站查看
    3. 岳仁田,马赵飞. 基于几何关系的无人机低空飞行冲突探测与解脱策略. 中国安全科学学报. 2023(05): 112-120 .
    4. 郭华,郭小和. 改进速度障碍法的无人机局部路径规划算法. 航空学报. 2023(11): 271-281 .
    5. 杨建航,张福彪,王江. 基于可达集的无人机低空飞行冲突解脱算法. 北京航空航天大学学报. 2023(07): 1813-1827 . 本站查看
    6. 王尔申,宋远上,佟刚,王传云,曲萍萍,徐嵩. 基于SVM的低空飞行冲突探测改进模型. 北京航空航天大学学报. 2022(01): 8-14 . 本站查看
    7. 张宏宏,甘旭升,孙静娟,王宁,陈致远. 针对合作型无人机的最优防相撞策略. 计算机工程与应用. 2022(04): 290-297 .
    8. 高扬,郭钒,陈靖淞,李高磊,王向章. 融合空域无人机与有人机冲突风险预测与解脱. 安全与环境学报. 2022(06): 3288-3294 .
    9. 牛胜华,韩佩. 智能巡查机器人自主避撞系统设计. 电子设计工程. 2021(04): 155-158+163 .
    10. 王红勇,邓涛涛,徐文强. 基于调速的飞行冲突探测与解脱方法. 科学技术与工程. 2021(13): 5584-5591 .
    11. 王新语,夏侯云翔,王耀锐. 基于复杂网络的空中交通流量控制系统设计. 自动化技术与应用. 2021(09): 137-141+151 .
    12. 杨文达,吴明功,温祥西,毕可心,蒋旭瑞. 基于速度障碍法的三维确定型冲突探测模型. 西华大学学报(自然科学版). 2021(06): 1-6 .
    13. 焦卫东,姚军强,王瑞冬. 基于凸包围盒的飞行冲突检测算法. 中国安全科学学报. 2021(12): 32-38 .
    14. 张宏宏,甘旭升,李昂,高志强,徐鑫宇. 基于速度障碍法的无人机避障与航迹恢复策略. 系统工程与电子技术. 2020(08): 1759-1767 .
    15. 徐鹏,康雪晶. 改进互动速度障碍的多机器人协同避障. 自动化与仪表. 2020(09): 35-39 .

    Other cited types(22)

  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(4)  / Tables(2)

    Article Metrics

    Article views(522) PDF downloads(222) Cited by(37)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return