Citation: | WANG Ershen, SUN Caimiao, TONG Gang, et al. Optimization method of multi-constellation GNSS vertical protection level based on particle swarm optimization algorithm[J]. Journal of Beijing University of Aeronautics and Astronautics, 2021, 47(11): 2175-2180. doi: 10.13700/j.bh.1001-5965.2020.0431(in Chinese) |
Aimed at the conservative problem of integrity risk and continuity risk allocation in the traditional Advanced Receiver Autonomous Integrity Monitoring (ARAIM) algorithm, a new integrity risk and continuity risk allocation method based on Particle Swarm Optimization (PSO) algorithm is proposed. This method uses different allocation strategies as different particles in the algorithm, and selects the weighted sum of the vertical protection levels corresponding to different fault subsets as the fitness function. Each particle updates its position and speed based on the principle of particle swarm optimization until the conditions are met, and then the optimized allocation strategy and the corresponding vertical protection level are obtained. The algorithm is verified through dual constellations and compared with traditional methods. The results show that the integrity risk and continuity risk allocation strategy based on the particle swarm optimization algorithm optimizes the vertical protection level and improves the ARAIM global availability.
[1] |
刘金鑫, 滕继涛, 李锐, 等. 基于子集包含减少ARAIM子集数量的方法[J]. 北京航空航天大学学报, 2020, 46(8): 1592-1660. doi: 10.13700/j.bh.1001-5965.2019.0517
LIU J X, TENG J T, LI R, et al. Method for reducing the number of ARAIM subsets[J]. Journal of Beijing University of Aeronautics and Astronautics, 2020, 46(8): 1592-1660(in Chinese). doi: 10.13700/j.bh.1001-5965.2019.0517
|
[2] |
BLANCH J, WALTER T, ENGE P, et al. Advanced RAIM user algorithm description: Integrity support message processing, fault detection, exclusion, and protection level calculation[C]//ION Global Navigation Satellite Systems Conference, 2012: 2828-2849.
|
[3] |
MENG Q, LIU J Y, ZENG Q H, et al. Improved ARAIM fault modes determination scheme based on feedback structure with probability accumulation[J]. GPS Solutions, 2019, 23(1): 16. doi: 10.1007/s10291-018-0809-8
|
[4] |
王尔申, 杨迪, 宏晨, 等. ARAIM技术研究进展[J]. 电信科学, 2019, 35(8): 128-138.
WANG E S, YANG D, HONG C, et al. Research progress of ARAIM technology[J]. Telecommunications Science, 2019, 35(8): 128-138(in Chinese).
|
[5] |
JOERGER M, PERVAN B. Multi-constellation ARAIM exploiting satellite motion[J]. Navigation, 2020, 67(2): 235-253. doi: 10.1002/navi.334
|
[6] |
ZHAI Y W, ZHAN X Q, CHANG J, et al. ARAIM with more than two constellations[C]//ION 2019 Pacific PNT Meeting, 2019: 925-941.
|
[7] |
LUO S L, WANG L, TU R, et al. Satellite selection methods for multi-constellation advanced RAIM[J]. Advances in Space Research, 2020, 65(5): 1503-1517. doi: 10.1016/j.asr.2019.12.015
|
[8] |
BANG E, MILNER C, MACABIAU C, et al. ARAIM temporal correlation effect on PHMI[C]//International Technical Meeting of the Satellite Division of the Institute of Navigation, 2018: 2682-2694.
|
[9] |
SUN X, XU L, JI Y, et al. An extremum approximation ARAIM algorithm based on GPS and BDS[J]. IEEE Access, 2020, 8: 30027-30036. doi: 10.1109/ACCESS.2020.2972766
|
[10] |
SUN Y, WANG T S, WANG Z P, et al. Optimal risk allocation for BDS/GPS advanced receiver autonomous integrity monitoring[C]//Proceedings of the 2015 International Technical Meeting of the Institute of Navigation, 2015: 687-695.
|
[11] |
BLANCH J, WALTER T, ENGE P. RAIM with optimal integrity and continuity allocations under multiple failures[J]. IEEE Transactions on Aerospace and Electronic Systems, 2010, 46(3): 1235-1247. doi: 10.1109/TAES.2010.5545186
|
[12] |
EL-MOWAFY A, YANG C. Limited sensitivity analysis of ARAIM availability for LPV-200 over Australia using real data[J]. Advances in Space Research, 2016, 57(2): 659-670. doi: 10.1016/j.asr.2015.10.046
|
[13] |
Working Group C, EU-U.S. ARAIM technical subgroup milestone 3 report[EB/OL]. (2016-02-25)[2019-09-20].
|
[14] |
Working Group C, EU-U.S. ARAIM concept of operation[EB/OL]. [2019-09-20].
|
[15] |
刘若辰, 李建霞, 刘静, 等. 动态多目标优化研究综述[J]. 计算机学报, 2020, 43(7): 1246-1278.
LIU R C, LI J X, LIU J, et al. A survey on dynamic multi-objective optimization[J]. Chinese Journal of Computers, 2020, 43(7): 1246-1278(in Chinese).
|
[16] |
RUSSELL C E, SHI Y. Particle swarm optimization: Developments, applications and resources[C]//Congress on Evolutionary Computation, 2002: 81-86.
|
[1] | DENG S Y,SUN R,ZHANG L D,et al. Protection level optimization method of ARAIM algorithm for urban road safety[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(1):222-234 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.1020. |
[2] | ZHOU X,ZHENG N S,DING R,et al. An improved inversion method of forest biomass based on satellite GNSS-R[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(8):2619-2626 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0654. |
[3] | WANG F,YANG P Y,YANG D K. Theories and simulations of river boundary and level measurement using GNSS-I/MR[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(6):1877-1887 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0529. |
[4] | ZHAO Gui-ling, WANG Jin-bao, JIANG Zi-hao, GAO Shuai. A GNSS/SINS fault detection and robust adaptive algorithm based on two parameters[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2023.0822 |
[5] | WANG F,ZHENG Q,YANG D K,et al. River parameter measurement research by GNSS-reflectometry[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(12):3771-3779 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0912. |
[6] | HUANG Mingming, SUN Rui. LiDAR aided GNSS/IMU positioning algorithm based on improved point cloud registration[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2023.0837 |
[7] | ZHANG Y,WANG Y,ZHOU S H,et al. Analysis on feasibility of detecting water blooms in Taihu Lake with spaceborne GNSS-R[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(3):695-705 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0298. |
[8] | LIU Z W,SUN R,JIANG L. Robust adaptive position algorithm for GNSS/IMU based on pseudorange residual and innovation[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(4):1316-1324 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0389. |
[9] | SONG Yuan, HUANG Zhi-gang, LI Rui, WANG Yue-chen, SHEN Jun, WANG Yong-chao, NIE Xin. An RTK integrity evaluation method based on risk probability decomposition[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2024-0134 |
[10] | ZHANG Yun, LU Qi, ZHANG Yue-wei, QIN Gan-yao, HU Xiu-qing, YANG Guang-lin. Spaceborne GNSS-R sea surface height inversion model using FY-3E[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2023.0540 |
[11] | ZHEN Jia-huan, ZHU Yun-long, YANG Dong-kai, ZHANG Guo-dong, WANG Feng. Detection of typhoons and estimation of eye position using satellite-based GNSS-R[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2023.0395 |
[12] | JIANG L,SUN R,LIU Z W,et al. Modeling and accuracy analysis of GNSS ionospheric error in EU-China based on GA-BP[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(6):1533-1542 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0476. |
[13] | MIAO D,YANG D K,XU Z C,et al. Low-altitude, slow speed and small target detection probability of passive radar based on GNSS signals[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(3):657-664 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0271. |
[14] | WU S Y,YANG D K,WANG F,et al. GNSS-R BSAR range-Doppler imaging algorithm based on synchronization of direct and echo signal[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(3):588-596 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0310. |
[15] | YANG W T,XU T H,WANG N Z,et al. Influence of open water in retrieval of soil moisture by spaceborne GNSS-R[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(7):1779-1786 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0479. |
[16] | HU Y,YUAN X T,LIU W,et al. GNSS-MR snow depth inversion method based on variational mode decomposition and moving average[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(11):2890-2897 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0777. |
[17] | NING Bao-jiao, WANG Na-zi, JING Li-li, GAO Fan, KONG Ya-hui, HE Yun-jiao. Research on the retrieval model of shore-based GNSS-R code altimetry[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2023.0213 |
[18] | CHEN J J,YUAN H,XU Y,et al. GNSS instantaneous attitude determination method based on multi-variable constraints[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(6):1394-1401 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0453. |
[19] | JI Li, SUN Rui, WANG Yuan-yuan, DAI Ye-ying. Heading enhancement algorithm of GNSS/IMU integrated navigation based on dual-antenna TDCP[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2023.0440 |
[20] | LONG Yuan, DENG Xiaolong, YANG Xixiang, HOU Zhongxi. Short-term rapid prediction of stratospheric wind field based on PSO-BP neural network[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(10): 1970-1978. doi: 10.13700/j.bh.1001-5965.2021.0068 |
1. | 邓思瑜,孙蕊,张立东,胡浩亮. 面向城市道路安全的ARAIM保护级优化方法. 北京航空航天大学学报. 2025(01): 222-234 . ![]() | |
2. | 王尔申,孙薪蕙,曲萍萍,曾洪正,徐嵩,庞涛. 基于动态粒子群算法的ARAIM可用性优化方法. 测绘学报. 2024(01): 137-145 . ![]() | |
3. | 王尔申,王欢,雷虹,曾洪正,曲萍萍,庞涛. 基于麻雀搜索算法的ARAIM故障子集优化算法. 北京航空航天大学学报. 2024(07): 2066-2073 . ![]() | |
4. | 邓思瑜,孙蕊. 基于风险优化分配的ARAIM保护级计算方法. 西华大学学报(自然科学版). 2024(06): 63-70 . ![]() | |
5. | 王尔申,刘慧超,雷虹,韩琳,宋建,徐嵩. 高精度BDS空间信号完好性评估方法. 沈阳航空航天大学学报. 2023(03): 56-62 . ![]() | |
6. | 王尔申,朱骏,徐嵩,杨健,宋建,陈昌龙,刘依凡. 基于无迹卡尔曼滤波的BDS/INS组合定位方法. 沈阳航空航天大学学报. 2023(04): 19-24 . ![]() |