Volume 47 Issue 3
Mar.  2021
Turn off MathJax
Article Contents
LI Jie, LI Yixuan, WU Tiansheng, et al. Fast, low-power and high-precision 3D reconstruction of UAV images based on FPGA[J]. Journal of Beijing University of Aeronautics and Astronautics, 2021, 47(3): 486-499. doi: 10.13700/j.bh.1001-5965.2020.0452(in Chinese)
Citation: LI Jie, LI Yixuan, WU Tiansheng, et al. Fast, low-power and high-precision 3D reconstruction of UAV images based on FPGA[J]. Journal of Beijing University of Aeronautics and Astronautics, 2021, 47(3): 486-499. doi: 10.13700/j.bh.1001-5965.2020.0452(in Chinese)

Fast, low-power and high-precision 3D reconstruction of UAV images based on FPGA

doi: 10.13700/j.bh.1001-5965.2020.0452
Funds:

National Natural Science Foundation of China 61801279

The Applied Basic Research Programs of Shanxi Province 201801D221160

Scientific and Technologial Innovation Programs of Higher Education Institutions in Shanxi (STIP) 2019L0471

Shanxi Graduate Education Innovation Project 2020SY175

Shanxi Graduate Education Innovation Project 2020SY176

More Information
  • Corresponding author: LI Jie, E-mail: lijiescu@aliyun.com
  • Received Date: 24 Aug 2020
  • Accepted Date: 05 Sep 2020
  • Publish Date: 20 Mar 2021
  • The existing 3D reconstruction methods based on Unmanned Aerial Vehicle (UAV) images cannot meet the mobile terminal's demand for low power consumption and high time efficiency. To tackle this issue, we propose a fast, low-power and high-precision 3D reconstruction method based on resource-constrained FPGA platforms, which combines instruction optimization strategy and hardware-software co-design method. First, we construct a multi-scale depth map fusion algorithm architecture to enhance the robustness of traditional FPGA phase correlation algorithms to untrustworthy areas, such as low-texture area and rivers. Secondly, based on the high parallel instruction optimization hardware acceleration function strategy, a high-performance hardware-software co-design scheme is proposed to realize the efficient operation of the multi-scale deep map fusion algorithm architecture on the FPGA platform with limited resources. Finally, we comprehensively compare the state-of-the-art CPU and GPU methods with our method. The experimental results show that our method is close to the GPU method in reconstruction time consumption, nearly 20 times faster than the CPU method, but the power consumption is only 2.23% of the GPU method.

     

  • loading
  • [1]
    韩磊, 徐梦溪, 王鑫, 等. 基于光场成像的多线索融合深度估计方法[J]. 计算机学报, 2020, 43(1): 107-122. https://www.cnki.com.cn/Article/CJFDTOTAL-JSJX202001008.htm

    HAN L, XU M X, WANG X, et al. Depth estimation from multiple cues based light-field cameras[J]. Chinese Journal of Computers, 2020, 43(1): 107-122(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JSJX202001008.htm
    [2]
    李海生, 武玉娟, 郑艳萍, 等. 基于深度学习的三维数据分析理解方法研究综述[J]. 计算机学报, 2020, 43(1): 41-63. https://www.cnki.com.cn/Article/CJFDTOTAL-JSJX202001004.htm

    LI H S, WU Y J, ZHENG Y P, et al. A survey of 3D data analysis and understanding based on deep learning[J]. Chinese Journal of Computers, 2020, 43(1): 41-63(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JSJX202001004.htm
    [3]
    LI J, LIU Y, DU S, et al. Hierarchical and adaptive phase correlation for precise disparity estimation of UAV images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2016, 54(12): 7092-7104. doi: 10.1109/TGRS.2016.2595861
    [4]
    TREVOR G, PATRICE D, SYLVAIN J, et al. A dedicated lightweight binocular stereo system for real-time depth-map generation[C]//Proceedings of the 2016 Conference on Design and Architectures for Signal and Image Processing (DASIP). Piscataway: IEEE Press, 2016: 215-221.
    [5]
    LENTARIS G, MARAGOS K, SOUDRIS D, et al. Single- and multi-FPGA acceleration of dense stereo vision for planetary rovers[J]. ACM Transactions on Embedded Computing Systems, 2019, 18(2): 1-27. doi: 10.1145/3312743
    [6]
    BHATIA T, LAHA J, MAJI A, et al. Design of FPGA based horizontal velocity computation and image storage unit for lunar lander[C]//Proceedings of the 2017 4th IEEE Uttar Pradesh Section International Conference on Electrical, Computer and Electronics (UPCON). Piscataway: IEEE Press, 2017: 521-526.
    [7]
    LENTARIS G, STRATAKOS I, STAMOULIAS I, et al. High-performance vision-based navigation on SoC FPGA for spacecraft proximity operations[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2020, 30(4): 1188-1202. doi: 10.1109/TCSVT.2019.2900802
    [8]
    LI J, LIU Y. High precision and fast disparity estimation via parallel phase correlation hierarchical framework[J/OL]. Journal of Real-Time Image Processing, (2020-05-02)[2020-08-13]. https://doi.org/10.1007/s11554-020-00972-1.
    [9]
    ZHENG J, ZHAI B, WANG Y, et al. Motion estimation using maximum sub-image and sub-pixel phase correlation on a DSP platform[J]. Multimedia Tools and Applications, 2019, 78(14): 19019-19043. doi: 10.1007/s11042-018-7146-3
    [10]
    KUHN M, MOSER S, ISLER O, et al. Efficient ASIC implementation of a real-time depth mapping stereo vision system[C]//Proceedings of the 2003 46th Midwest Symposium on Circuits and Systems. Piscataway: IEEE Press, 2003: 1478-1481.
    [11]
    MASRANI D K, MACLEAN W J. A real-time large disparity range stereo-system using FPGAs[C]//Proceedings of the 4th IEEE International Conference on Computer Vision Systems (ICVS'06). Piscataway: IEEE Press, 2006: 42-51.
    [12]
    BATTIATO S, BRUNA A R, PUGLISI G, et al. A robust block-based image/video registration approach for mobile imaging devices[J]. IEEE Transactions on Multimedia, 2010, 12(7): 622-635. doi: 10.1109/TMM.2010.2060474
    [13]
    MONTEIRO E, VIZZOTTO B B, DINIZ C U, et al. Applying CUDA architecture to accelerate full search block matching algorithm for high performance motion estimation in video encoding[C]//Proceedings of the 2011 23rd International Symposium on Computer Architecture and High Performance Computing. Piscataway: IEEE Press, 2011: 128-135.
    [14]
    KIM S W, YIN S, YUN K, et al. Spatio-temporal weighting in local patches for direct estimation of camera motion in video stabilization[J]. Computer Vision and Image Understanding, 2014, 118: 71-83. doi: 10.1016/j.cviu.2013.09.005
    [15]
    WU X, ZHAO Q, BU W, et al. A SIFT-based contactless palmprint verification approach using iterative RANSAC and local palmprint descriptors[J]. Pattern Recognition, 2014, 47(10): 3314-3326. doi: 10.1016/j.patcog.2014.04.008
    [16]
    CHEN J, XING M, SUN G, et al. A 2-D space-variant motion estimation and compensation method for ultrahigh-resolution airborne stepped-frequency SAR with long integration time[J]. IEEE Transactions on Geoscience and Remote Sensing, 2017, 55(11): 6390-6401. doi: 10.1109/TGRS.2017.2727060
    [17]
    ISMAIL Y, MCNEELY J, SHAABAN M, et al. A fast discrete transform architecture for frequency domain motion estimation[C]//Proceedings of the IEEE International Conference on Image Processing. Piscataway: IEEE Press, 2010: 1249-1252.
    [18]
    ALBA A, VIGUERAS-GOMEZ J F, ARCE-SANTANA E R, et al. Phase correlation with sub-pixel accuracy: A comparative study in 1D and 2D[J]. Computer Vision and Image Understanding, 2015, 137: 76-87. doi: 10.1016/j.cviu.2015.03.011
    [19]
    DONG Y, LONG T, JIAO W, et al. A novel image registration method based on phase correlation using low-rank matrix factorization with mixture of gaussian[J]. IEEE Transactions on Geoscience and Remote Sensing, 2018, 56(1): 446-460. doi: 10.1109/TGRS.2017.2749436
    [20]
    KUMAR S, AZARTASH H, BISWAS M, et al. Real-time affine global motion estimation using phase correlation and its application for digital image stabilization[J]. IEEE Transactions on Image Processing, 2011, 20(12): 3406-3418. doi: 10.1109/TIP.2011.2156420
    [21]
    TZIMIROPOULOS G, ARGYRIOU V, ZAFEIRIOU S, et al. Robust FFT-based scale-invariant image registration with image gradients[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2010, 32(10): 1899-1906. doi: 10.1109/TPAMI.2010.107
    [22]
    MATTHIES L, MAIMONE M, JOHNSON A E, et al. Computer vision on mars[J]. International Journal of Computer Vision, 2007, 75(1): 67-92. doi: 10.1007/s11263-007-0046-z
    [23]
    DARABIHA A, ROSE J, MACLEAN J W, et al. Video-rate stereo depth measurement on programmable hardware[C]//Proceedings of the 2003 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE Press, 2003: 203-210.
    [24]
    BHATIA T, MAJI A, LAHA J, et al. Practical approach for implementation of phase correlation based image registration in FPGA[C]//Proceedings of the 2018 International Conference on Current Trends Towards Converging Technologies (ICCTCT). Piscataway: IEEE Press, 2018: 1-4.
    [25]
    MATSUO K, HAMADA T, MIYOSHI M, et al. Accelerating phase correlation functions using GPU and FPGA[C]//Proceedings of the 2009 NASA/ESA Conference on Adaptive Hardware and Systems. Piscataway: IEEE Press, 2009: 433-438.
    [26]
    LIU J G, HONG S Y. Robust phase correlation methods for sub-pixel feature matching[C]//Proceeding of the 1st Conference of Systems Engineering for Autonomous Systems. Piscataway: IEEE Press, 2012: 1-10.
    [27]
    TAKITA K, MUQUIT M A, AOKI T, et al. A sub-pixel correspondence search technique for computer vision applications[J]. IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences, 2004, 87(8): 1913-1923. http://ci.nii.ac.jp/naid/110003213121/en
    [28]
    CHEN T, LIU Y, LI J, et al. Fast narrow-baseline stereo matching using CUDA compatible GPUs[C]//Proceeding of the Advances in Image and Graphics Technologies(IGTA 2015). Piscataway: IEEE Press, 2015: 10-17.
    [29]
    MORGAN G L, LIU J, YAN H, et al. Precise subpixel disparity measurement from very narrow baseline stereo[J]. IEEE Transactions on Geoscience and Remote Sensing, 2010, 48(9): 3424-3433. doi: 10.1109/TGRS.2010.2046672
    [30]
    刘怡光, 赵晨晖, 黄蓉刚, 等. 勿需图像矫正的高精度窄基线三维重建算法[J]. 电子科技大学学报, 2014, 43(2): 262-267. doi: 10.3969/j.issn.1001-0548.2014.02.020

    LIU Y G, ZHAO C H, HUANG R G, et al. Rectification-free 3-dimensional reconstruction method based on phase correlation for narrow baseline image pairs[J]. Journal of University of Electronic Science and Technology of China, 2014, 43(2): 262-267(in Chinese). doi: 10.3969/j.issn.1001-0548.2014.02.020
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(12)  / Tables(3)

    Article Metrics

    Article views(721) PDF downloads(155) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return