Volume 47 Issue 12
Dec.  2021
Turn off MathJax
Article Contents
SUN Bing, CHEN Wei. Robust nonlinear flight control method against control saturation[J]. Journal of Beijing University of Aeronautics and Astronautics, 2021, 47(12): 2475-2483. doi: 10.13700/j.bh.1001-5965.2020.0473(in Chinese)
Citation: SUN Bing, CHEN Wei. Robust nonlinear flight control method against control saturation[J]. Journal of Beijing University of Aeronautics and Astronautics, 2021, 47(12): 2475-2483. doi: 10.13700/j.bh.1001-5965.2020.0473(in Chinese)

Robust nonlinear flight control method against control saturation

doi: 10.13700/j.bh.1001-5965.2020.0473
Funds:

Science and Technology Fund of Jilin Provincial Education Department during the 13th Five Year Plan JJKH20200252KJ

More Information
  • Corresponding author: SUN Bing, E-mail: ai-bb@163.com
  • Received Date: 28 Aug 2020
  • Accepted Date: 21 Dec 2020
  • Publish Date: 20 Dec 2021
  • When the aerocraft is maneuvering in a large envelope, its rudder surface and engine are easily saturated. This phenomenon will not only affect the stability of the closed-loop system, but also greatly shorten the service life of the engine and other key components. To solve this problem, a nonlinear flight control method against saturation was designed. First, the strict feedback nonlinear model of the aerocraft was established. Then, the rudder control and engine speed control commands were designed by using adaptive backstepping design method, and the modeling error was approximated by Radial Basis Function (RBF) network. To solve the control saturation problem, the corresponding anti-saturation dynamic compensation systems were designed respectively. By establishing the Lyapunov function of the closed-loop system, the update weights of RBF network and the structural parameters of anti-saturation dynamic compensation system were determined by stability theory, which ensures the global stability of the designed closed-loop control system. Finally, the simulation results show that, when the control saturation occurs, the anti-saturation compensation system can modify the control command in real time, which helps the system to get out of saturation state quickly and shorten the saturation time by 30%-60%, with high command tracking accuracy.

     

  • loading
  • [1]
    孙径广, 孟庆鹏, 李传明. 带有落角约束的反舰导弹自适应饱和制导律设计[J]. 指挥控制与仿真, 2020, 42(3): 118-122. doi: 10.3969/j.issn.1673-3819.2020.03.022

    SUN J G, MENG Q P, LI C M. Adaptive saturated guidance law designed for anti-ship missile with terminal angular constraint[J]. Command Control & Simulation, 2020, 42(3): 118-122(in Chinese). doi: 10.3969/j.issn.1673-3819.2020.03.022
    [2]
    HU J C, ZHANG H H, WANG Z G. Hybrid adaptive control of spacecraft attitude with input saturation and external disturbance[J]. Journal of Guidance, Control, and Dynamices, 2019, 42(3): 642-649. doi: 10.2514/1.G003090
    [3]
    PAULO R A, MIOARA J, CHRISTOPHE L, et al. Stable model predictives strategy for rendezvous hovering phases allowing for control saturation[J]. Journal of Guidance, Control, and Dynamices, 2019, 42(8): 1658-1675. doi: 10.2514/1.G003558
    [4]
    HU Q L, TAN X, AKELLA M A. Fitie-time fault-tolerant spacecraft attitude control with torque saturation[J]. Journal of Guidance, Control, and Dynamices, 2017, 40(10): 2524-2537. doi: 10.2514/1.G002191
    [5]
    刘田禾, 安昊, 王常虹. 高超声速飞行器的抗饱和切换控制[J]. 宇航学报, 2020, 41(3): 329-336. https://www.cnki.com.cn/Article/CJFDTOTAL-YHXB202003010.htm

    LIU T H, AN H, WANG C H. Anti-windup switched control of hypersonic vehicle[J]. Journal of Astronautics, 2020, 41(3): 329-336(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-YHXB202003010.htm
    [6]
    刘田禾, 张立宪, 张瑞先, 等. 基于切换系统的高超声速飞行器建模及抗饱和控制方法: CN110244768A[P]. 2019-09-17.

    LIU T H, ZHANG L X, ZHANG R X, et al. Hypersonic vehicle modeling and anti saturation control method based on switched system: CN110244768A[P]. 2019-09-17(in Chinese).
    [7]
    吴跃飞, 马大为, 乐贵高. 控制受限的火箭炮位置伺服系统鲁棒自适应反步控制[J]. 兵工学报, 2013, 34(4): 476-483. https://www.cnki.com.cn/Article/CJFDTOTAL-BIGO201304016.htm

    WU Y F, MA D W, LE G G. Robust adaptive backstepping control for rocket launcher position servo system with constraint control[J]. Acta Armamentarii, 2013, 34(4): 476-483(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-BIGO201304016.htm
    [8]
    周洪波, 裴海龙, 贺跃帮. 状态受限的小型无人直升机轨迹跟踪控制[J]. 控制理论与应用, 2012, 29(6): 778-784. https://www.cnki.com.cn/Article/CJFDTOTAL-KZLY201206013.htm

    ZHOU H B, PEI H L, HE Y B. Trajectory-tracking control for small unmanned helicopter with state constraints[J]. Control Theory & Applications, 2012, 29(6): 778-784(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-KZLY201206013.htm
    [9]
    HERRMANN G, MENON P P, TURNER M C. Anti-windup synthesis for nonlinear dynamic inversion control schemes[J]. International Journal of Robust and Nonlinear Control, 2010, 20(13): 1465-1482. http://www.onacademic.com/detail/journal_1000034274483110_c47f.html
    [10]
    GUILLAUME J J. Fault-tolerant flight control and guidance systems[M]. Berlin: Springer, 2009: 118-119.
    [11]
    孙超娇, 陈勇, 景博. 基于权值优化的多操纵面抗饱和控制分配策略[J]. 系统工程与电子技术, 2019, 41(6): 1351-1357. https://www.cnki.com.cn/Article/CJFDTOTAL-XTYD201906024.htm

    SUN C J, CHEN Y, JING B. Anti-windup control allocation strategy for over-actuated aircraft based on weight optimization[J]. Systems Engineering and Electronics, 2019, 41(6): 1351-1357(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-XTYD201906024.htm
    [12]
    成高, 刘满园, 李宪强, 等. 再入飞行器大攻角飞行时的姿态控制律设计[J]. 宇航学报, 2017, 38(8): 847-854. https://www.cnki.com.cn/Article/CJFDTOTAL-YHXB201708009.htm

    CHENG G, LIU M Y, LI X Q, et al. The attitude controller design for the reentry vehicle flying with high angle of attack[J]. Journal of Astronautics, 2017, 38(8): 847-854(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-YHXB201708009.htm
    [13]
    周丽, 姜长生, 文杰. 超机动飞行的非线性鲁棒自适应控制系统研究[J]. 系统工程与电子技术, 2008, 30(4): 710-714. doi: 10.3321/j.issn:1001-506X.2008.04.029

    ZHOU L, JIANG C S, WEN J. Research on robust and adaptive nonlinear control system of supermaneuverable fight[J]. Systems Engineering and Electronics, 2008, 30(4): 710-714(in Chinese). doi: 10.3321/j.issn:1001-506X.2008.04.029
    [14]
    姜超, 宋科璞, 周海军. 基于L1自适应方法的尾坐式无人机控制律设计[J]. 兵工自动化, 2017, 36(8): 14-19. https://www.cnki.com.cn/Article/CJFDTOTAL-BGZD201708004.htm

    JIANG C, SONG K P, ZHOU H J. Control law design for tail-sitter UAV based on L1 adaptive control method[J]. Ordnance Industry Automation, 2017, 36(8): 14-19(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-BGZD201708004.htm
    [15]
    陈洁, 周绍磊, 宋召青. 高超声速飞行器迎角观测器及控制器设计[J]. 北京航空航天大学学报, 2011, 37(7): 827-832. https://bhxb.buaa.edu.cn/CN/Y2011/V37/I7/827

    CHEN J, ZHOU S L, SONG Z Q. Nonlinear modelling and open-loop dynamatics characteristics for one hypersonic aircraft[J]. Journal of Beijing University of Aeronautics and Astronautics, 2011, 37(7): 827-832(in Chinese). https://bhxb.buaa.edu.cn/CN/Y2011/V37/I7/827
    [16]
    SONNEVELDT L, CHU Q P, MULDER J A. Nonlinear flight control design using constrained adaptive backstepping[J]. Journal of Guidance, Control, and Dynamics, 2007, 30(2): 322-335. http://www.researchgate.net/profile/Mohamed_Hamdy18/post/how_backstepping_controller_is_designed/attachment/59d61dd979197b807797ae61/AS:273701252075521@1442266871452/download/sonneveldt2007.pdf
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(4)

    Article Metrics

    Article views(360) PDF downloads(53) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return