Citation: | CUI Lijie, CONG Jiping, DING Gang, et al. Supportability evaluation of aviation equipment system based on uncertainty[J]. Journal of Beijing University of Aeronautics and Astronautics, 2021, 47(12): 2452-2461. doi: 10.13700/j.bh.1001-5965.2020.0490(in Chinese) |
Aimed at the characteristics of complex structure, various elements, and strong coupling of aviation equipment system, based on the analysis of its support process, the multi-Agent modeling technology is used to carry out the supportability modeling of the aviation equipment system, and analysis and evaluation are performed. Taking into account the large amount of subjective and objective uncertainty factors in the support process, the uncertainty factors are described in the forms of random distribution and fuzzy variables. In order to conform to the characteristics of dynamic time-varying objective variables, the maximum likelihood estimation based on cross-entropy and the Hamilton Monte Carlo method are combined to realize simulation parameter description based on information update and optimize aviation equipment system support simulation model. Finally, a typical combat training task is taken as an example to verify the feasibility and accuracy of the proposed method.
[1] |
丁刚, 张琳, 崔利杰, 等. 基于任务的航空装备保障体系概念建模研究[J]. 军事运筹与系统工程, 2020, 34(1): 39-46. doi: 10.3969/j.issn.1672-8211.2020.01.008
DING G, ZHANG L, CUI L J, et al. Research on concept modeling of mission-based aviation equipment support system of systems[J]. Military Operations Research and Systems Engineering, 2020, 34(1): 39-46(in Chinese). doi: 10.3969/j.issn.1672-8211.2020.01.008
|
[2] |
邢彪, 曹军海, 宋太亮, 等. 基于Agent的维修保障仿真系统设计与实现[J]. 系统仿真学报, 2017, 29(1): 129-135.
XING B, CAO J H, SONG T L, et al. Design and implementation for maintenance support simulation system based on Agent[J]. Journal of System Simulation, 2017, 29(1): 129-135(in Chinese).
|
[3] |
冯强, 曾声奎, 康锐. 基于多主体的舰载机综合保障过程建模方法[J]. 系统工程与电子技术, 2010, 32(1): 211-216.
FENG Q, ZENG S K, KANG R. Multiagent-based modeling method for integrated logistic support of the carrier aircraft[J]. Systems Engineering and Electronics, 2010, 32(1): 211-216(in Chinese).
|
[4] |
郭霖瀚, 康锐, 康晓明. 装备群保障规模预测方法研究[J]. 系统工程与电子技术, 2009, 31(5): 1262-1265. doi: 10.3321/j.issn:1001-506X.2009.05.058
GUO L H, KANG R, KANG X M. Equipments support footprint forecast method research[J]. Systems Engineering and Electronics, 2009, 31(5): 1262-1265(in Chinese). doi: 10.3321/j.issn:1001-506X.2009.05.058
|
[5] |
MEHDIFAR F, BECHLIOULIS C P, HASHEMZADEH F, et al. Prescribed performance distance-based formation control of multi-agent systems[J]. Automatica, 2020, 119: 109086. doi: 10.1016/j.automatica.2020.109086
|
[6] |
FLOREZ L J, CARAFFINI F, PARRA C, et al. Cooperative and distributed decision-making in a multi-agent perception system for improvised land mines detection[J]. Information Fusion, 2020, 64: 32-49. doi: 10.1016/j.inffus.2020.06.009
|
[7] |
赵星贺, 周斌, 封会娟, 等. 基于蒙特卡罗仿真评价车辆装备预防性维修间隔期方法[J]. 兵工自动化, 2019, 38(11): 92-96.
ZHAO X H, ZHOU B, FENG H J, et al. Evaluation method of preventive maintenance interval of vehicle equipment based on Monte Carlo simulation[J]. Ordnance Industry Automation, 2019, 38(11): 92-96(in Chinese).
|
[8] |
AMIN M, MOHAMMAD R F, DAVOOD D, et al. Grey-fuzzy solution for multi-objective linear programming with interval coefficients[J]. Grey Systems: Theory and Application, 2018, 8(3): 312-327. doi: 10.1108/GS-01-2018-0007
|
[9] |
SURADEI D, JESSADA K, WAREE K. State-of-charge estimation based on theory of evidence and interval analysis with differential evolution optimization[J]. Annals of Operations Research, 2019, 300: 399-414. doi: 10.1007/s10479-019-03390-0
|
[10] |
AVRILIA K, NIKOS M, BASIL P. Fuzzy reasoning in the investigation of seismic behavior[J]. Mathematical Methods in the Applied Sciences, 2020, 43(13): 7747-7757. doi: 10.1002/mma.6184
|
[11] |
YOUSEFI N, COIT D W, SONG S. Reliability analysis of systems considering clusters of dependent degrading components[J]. Reliability Engineering & System Safety, 2020, 202: 107005.
|
[12] |
SHI Y, ZHU W, XIANG Y, et al. Condition-based maintenance optimization for multi-component systems subject to a system reliability requirement[J]. Reliability Engineering & System Safety, 2020, 202: 107042.
|
[13] |
PETCHROMPO S, LI H, ERGUIDO A, et al. A value-based approach to optimizing long-term maintenance plans for a multi-asset k-out-of-N system[J]. Reliability Engineering & System Safety, 2020, 200: 106924.
|
[14] |
GAHLOT M, SINGH V V, AYAGI H I, et al. Stochastic analysis of a two units' complex repairable system with switch and human failure using copula approach[J]. Life Cycle Reliability and Safety Engineering, 2019, 9: 1-11.
|
[15] |
THACH T T, BRIS R, VOLF P, et al. Non-linear failure rate: A Bayes study using Hamiltonian Monte Carlo simulation[J]. International Journal of Approximate Reasoning, 2020, 123: 55-76. doi: 10.1016/j.ijar.2020.04.007
|
[16] |
ZHU T. Reliability estimation for two-parameter Weibull distribution under block censoring[J]. Reliability Engineering & System Safety, 2020, 203: 107071.
|
[17] |
ALMALKI S J, YUAN J. A new modified Weibull distribution[J]. Reliability Engineering & System Safety, 2013, 111: 164-170.
|
[18] |
丛继平, 崔利杰, 丁刚, 等. 基于目标驱动的航空维修保障体系仿真研究[J]. 系统仿真学报, 2021, 33(9): 2157-2165.
CONG J P, CUI L J, DING G, et al. Simulation on aviation maintenance support system based on goal-driven[J]. Journal of System Simulation, 2021, 33(9): 2157-2165(in Chinese).
|
[19] |
孙璐璐, 滕曰, 黄锐. 飞机完好率预测仿真研究[J]. 兵器装备工程学报, 2017, 38(8): 71-75. doi: 10.11809/scbgxb2017.08.017
SUN L L, TENG Y, HUANG R. Simulation of aircraft readiness rate prediction[J]. Journal of Ordnance Equipment Engineering, 2017, 38(8): 71-75(in Chinese). doi: 10.11809/scbgxb2017.08.017
|
[20] |
DAMIAN D N, AJAY B C. NetLogo agent-based models as tools for understanding the self-organization of cell fate, morphogenesis and collective migration of the zebrafish posterior lateral line primordium[J]. Seminars in Cell & Developmental Biology, 2020, 100: 186-198.
|
[21] |
KROESE D P, POROTSKY S, RUBINSTEIN R Y. The cross-entropy method for continuous multi-extremal optimization[J]. Methodology and Computing in Applied Probability, 2006, 8(3): 383-407. doi: 10.1007/s11009-006-9753-0
|
[22] |
BRAIBANT V, OUDSHOOM A, BOYER C, et al. Nondeterministic "possibilistic" approaches for structural analysis and optimal design[J]. AIAA Journal, 1999, 37(10): 1298-1303. doi: 10.2514/2.599
|
[23] |
LI Z, ZHANG T, CHENG S, et al. Stochastic gradient Hamiltonian Monte Carlo with variance reduction for Bayesian inference[J]. Machine Learning, 2019, 108(8-9): 1701-1727. doi: 10.1007/s10994-019-05825-y
|
[24] |
STARCZEWSKI J T, GOETZEN P, NAPOLI C. Triangular fuzzy-rough set based fuzzification of fuzzy rule-based systems[J]. Journal of Artificial Intelligence and Soft Computing Research, 2020, 10(4): 271-285. doi: 10.2478/jaiscr-2020-0018
|
[25] |
CHENG K, LU Z Z, ZHOU Y C. Global sensitivity analysis using support vector regression[J]. Applied Mathematical Modelling, 2017, 49: 587-598. doi: 10.1016/j.apm.2017.05.026
|
[26] |
QUETZERI-SANTIAGO M A, CASTREJÓN-PITA J R, CAS-TREJÓN-PITA A A. On the analysis of the contact angle for impacting droplets using a polynomial fitting approach[J]. Experiments in Fluids, 2020, 61(6): 143. doi: 10.1007/s00348-020-02971-1
|
[27] |
FARAVELLI L. Response-surface approach for reliability analysis[J]. Journal of Engineering Mechanics, 1989, 115(12): 2763-2781. doi: 10.1061/(ASCE)0733-9399(1989)115:12(2763)
|
[28] |
LI H S, LU Z Z, YUE Z F. Support vector machine for structural reliability analysis[J]. Applied Mathematics and Mechanics, 2006, 27(10): 1295-1303. doi: 10.1007/s10483-006-1001-z
|
[29] |
HURTADO J E, ALVAREZ D A. Neural-network-based reliability analysis: A comparative study[J]. Computer Methods in Applied Mechanics and Engineering, 2001, 191(1-2): 113-132. doi: 10.1016/S0045-7825(01)00248-1
|
[1] | MA S H,ZHANG D,WANG M Y,et al. Directed interactive topology optimization design for multi-agent affine formation maneuver control[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(4):1367-1376 (in Chinese). doi: 10.13700/j.bh.1001-5965.2023.0180. |
[2] | GUO F,HAN W,LIU Y J,et al. Time uncertainty analysis on cyclic operation procedures of carrier aircraft based on MC-GERT[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(3):795-805 (in Chinese). doi: 10.13700/j.bh.1001-5965.2023.0129. |
[3] | LI K,SHEN Z G,ZHANG X J. Study on uncertainties of graphene tag antenna by screen printing[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(3):857-864 (in Chinese). doi: 10.13700/j.bh.1001-5965.2023.0159. |
[4] | LI Y,ZHANG X X,SUN F Q,et al. Belief reliability modeling for assembly accuracy of spaceborne SAR antenna deployable mechanism[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(1):134-143 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0234. |
[5] | HUANG Jiaqi, GUO Hongwei, YANG Shuai, HAN Kexian, WANG Wuhong. Research on the two-stage dynamic scheduling method for aviation support operations[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2024.0427 |
[6] | PANG F Q,ZHAO H F,KANG Y Y. Uncertainty estimation fused end-to-end video event detection algorithm[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(12):3759-3770 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0897. |
[7] | LIU Ting, LIU Xiao, GUO Lei, CENG Lei, GUO Yijun. Research on Uncertainty Analysis Methods for Heat Transfer Ablation in Carbon-Based Materials[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2024.0301 |
[8] | WANG Zhi-hui, XIANG Zhi-ning, GAO Ping. Research on Uncertainty in Kill Effectiveness of Anti-Ship Ballistic Missiles[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2023.0774 |
[9] | TIAN M Y,SHEN Z J. Trajectory planning of re-entry gliding vehicle in a class of uncertain environment[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(8):2514-2523 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0640. |
[10] | DING Jianli, LIU Hu, CAO Weidong. Quantitative model of uncertainty for prediction of flight transit time[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2024.0445 |
[11] | LI Z X,MA M Y,WU J H,et al. Model correction method for CFD numerical simulation under mixed aleatory and epistemic uncertainty[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(7):2343-2353 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0624. |
[12] | CHAI G Q,BO X S,LIU H J,et al. Self-supervised scene depth estimation for monocular images based on uncertainty[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(12):3780-3787 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0943. |
[13] | XING Zhi-wei, SUN Ke, LUO Qian, LIU Chang, ZHANG Tao, QIAO Di. Imputation Method for Flight Ground Support Data Based on Graph Neural Network[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2023.0300 |
[14] | TANG Xiao-wei, DING Ye, WU Zheng-long, ZHANG Sheng-run, WU Jia-qi, YE Meng-fan. Dynamic prediction of aircraft turnaround operations based on the cascade[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2023.0304 |
[15] | WANG Guang-han, SONG Chen, YANG Chao. Influence of airfoil uncertainty on aerodynamic characteristics and shape inspection method[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2023.0647 |
[16] | DONG X X,YUE Z J,WANG Z,et al. Uncertainty lightweight design of sandwich structure of rocket fairing cone[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(3):625-635 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0267. |
[17] | ZHANG J,ZHANG Z R,HONG Z C,et al. Robust optimization of aviation logistics network in context of COVID-19 pandamic[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(9):2218-2226 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0664. |
[18] | DING G,CUI L J,HAN C,et al. Simulation evaluation and analysis of aircraft group support based on multi-agent[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(9):2306-2316 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0685. |
[19] | YANG Chao, JIANG Yu, WU Zhigang. Numerical simulation of skipping motion of three-dimensional structure based on boundary element method[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(9): 1678-1691. doi: 10.13700/j.bh.1001-5965.2022.0141 |
[20] | ZHANG Wei, WANG Qiang, LU Jiachen, YAN Chao. Robust optimization design under geometric uncertainty based on PCA-HicksHenne method[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(12): 2473-2481. doi: 10.13700/j.bh.1001-5965.2021.0142 |
1. | 陈子涵. 基于多模态Transformer的机电作动器剩余寿命预测. 兵工学报. 2023(10): 2920-2931 . ![]() | |
2. | 张玉杰,彭宇,刘大同. 飞机机电系统部件数据驱动健康状态在线估计方法综述. 仪器仪表学报. 2022(06): 118-130 . ![]() | |
3. | 沈洁. 基于机器视觉的短时交通流量参数估计方法研究. 自动化与仪器仪表. 2021(11): 151-155 . ![]() |