Citation: | ZHENG Chengcheng, WANG Jiebing, WU Manqiao, et al. Rapid design method of spacecraft casting cabin structure[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(1): 87-94. doi: 10.13700/j.bh.1001-5965.2020.0534(in Chinese) |
In order to improve the structural design efficiency, design quality and iterative efficiency of the spacecraft casting cabin in the scheme demonstration stage, the structural parameters of the casting cabin are studied in combination with structural characteristics of the spacecraft with complex surface, and the curve curvature method is used to express the parametric layout of longitudinal reinforcement. The publication elements of the cabin structural frame model are defined to achieve the Top-Down design of the casting cabin. Simultaneously, a rapid parametric design method for spacecraft casting cabin structure is proposed, normalized modeling is implemented by defining casting feature naming rules and creating feature sets, the rapid design is realized by encapsulating cabin design knowledge, and the feature parameterization is realized by creating feature parameters and formulas. Finally, the rapid design environment for the interactive casting cabin structure is established, rapid structure design and rapid structure modification of casting cabin structure are realized, and the feasibility and effectiveness of the proposed method are verified by the example of spacecraft casting cabin.
[1] |
宗驰. 复杂机械产品快速响应设计集成系统研究[D]. 武汉: 武汉大学, 2010.
ZONG C. Research on rapid response design integrated system for complicated mechanical product[D]. Wuhan: Wuhan University, 2010(in Chinese).
|
[2] |
张卫东, 李少阳, 郑宇, 等. 运载火箭数字化工程[M]. 北京: 中国宇航出版社, 2017.
ZHANG W D, LI S Y, ZHENG Y, et al. Digital engineering of launch vehicle[M]. Beijing: China Aerospace Publishing House, 2017(in Chinese).
|
[3] |
王小军, 陈海东, 等. 运载火箭数字样机工程[M]: 北京: 中国宇航出版社, 2017.
WANG X J, CHEN H D, et al. Digital prototype project of launch vehicle[M]. Beijing: China Aerospace Publishing House, 2017(in Chinese).
|
[4] |
刘洋. 基于特征的飞机长桁结构件快速建模技术研究[D]. 南京: 南京航空航天大学, 2015.
LIU Y. Research on feature-based rapid modeling for aircraft stringer parts[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2015(in Chinese).
|
[5] |
LI J X, NING T, XI P. Rapid structure design and automated adjustment of missile body[J]. Procedia CIRP, 2016, 56: 84-89. doi: 10.1016/j.procir.2016.10.021
|
[6] |
唐家鹏, 席平, 胡毕富, 等. 知识驱动飞机翼面结构快速设计[J]. 北京航空航天大学学报, 2013, 39(6): 808-812. https://bhxb.buaa.edu.cn/CN/Y2013/V/I6/808
TANG J P, XI P, HU B F, et al. Knowledge-driven rapid design on aircraft wing structure[J]. Journal of Beijing University of Aeronautics and Astronautics, 2013, 39(6): 808-812(in Chinese). https://bhxb.buaa.edu.cn/CN/Y2013/V/I6/808
|
[7] |
秦海峰, 王强, 黄翔. 基于特征与知识的航空钣金快速设计系统的研究与开发[J]. 机械制造与研究, 2010, 39(4): 13-16.
QIN H F, WANG Q, HUANG X. Research on and development of rapid design system for aviation sheet metal based on features and knowledge[J]. Machine Building & Automation, 2010, 39(4): 13-16(in Chinese).
|
[8] |
刘明, 郝博, 李振国. 航空机翼翼梁的快速建模技术研究[J]. 组合机床与自动化加工技术, 2016(8): 22-29.
LIU M, HAO B, LI Z G. Research on the rapid modeling of aircraft wing beam model[J]. Modular Machine Tool & Automatic Manufacturing Technique, 2016(8): 22-29(in Chinese).
|
[9] |
陈裨, 罗明强, 武哲. 民用飞机机身结构快速设计及自动化调整[J]. 北京航空航天大学学报, 2014, 40(6): 782-787. doi: 10.13700/j.bh.1001-5965.2013.0391
CHEN B, LUO M Q, WU Z. Rapid structure design and automated adjustment of civil aircraft fuselage[J]. Journal of Beijing University of Aeronautics and Astronautics, 2014, 40(6): 782-787(in Chinese). doi: 10.13700/j.bh.1001-5965.2013.0391
|
[10] |
周运金. 基于Pro/E的两种自顶向下的设计方法[J]. 机械设计与制造, 2007(3): 80-82. doi: 10.3969/j.issn.1001-3997.2007.03.035
ZHOU Y J. Two top-down design methods based on Pro/E[J]. Machinery Design & Manufacture, 2007(3): 80-82(in Chinese). doi: 10.3969/j.issn.1001-3997.2007.03.035
|
[11] |
崔琼瑶, 齐从谦. 基于参数化技术的自顶向下设计及其应用[J]. 同济大学学报, 2002, 30(9): 1087-1090. doi: 10.3321/j.issn:0253-374X.2002.09.012
CUI Q Y, QI C Q. Parametric technology-based on top-down designand application in product developing[J]. Journal of Tongji University, 2002, 30(9): 1087-1090(in Chinese). doi: 10.3321/j.issn:0253-374X.2002.09.012
|
[12] |
梁岱春, 张为民, 隋立江. 浅析基于CAA的CATIA二次开发[J]. 航空制造技术, 2012(10): 65-68. doi: 10.3969/j.issn.1671-833X.2012.10.011
LIANG D C, ZHANG W M, SUI L J. Brief analysis on secondary development of CATIA based on CAA[J]. Aeronautical Manufacturing Technology, 2012(10): 65-68(in Chinese). doi: 10.3969/j.issn.1671-833X.2012.10.011
|
[13] |
蒋丽. CATIA软件二次开发基础技术[J]. 汽车工程师, 2016(4): 38-41. doi: 10.3969/j.issn.1674-6546.2016.04.008
JIANG L. Basic technology for CATIA secondary development[J]. Auto Engineer, 2016(4): 38-41(in Chinese). doi: 10.3969/j.issn.1674-6546.2016.04.008
|
[14] |
王智明, 杨旭, 平海涛. 知识工程及专家系统[M]. 北京: 化学工业出版社, 2006.
WANG Z M, YANG X, PING H T. Knowledge engineering and expert system[M]. Beijing: Chemical Industry Press, 2006(in Chinese).
|
[15] |
施荣明, 赵敏, 孙聪. 知识工程与创新[M]: 北京: 航空工业出版社, 2009.
SHI R M, ZHAO M, SUN C. Knowledge engineering and innovation[M]. Beijing: Aviation Industry Press, 2009(in Chinese).
|
[1] | CAI Y,SI Y H,WANG Y Z,et al. Design and application of EMD-ARIMA drift model for flexible gyro[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(11):3434-3444 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0871. |
[2] | YANG Xin, DUO Lin, REN Yong, XU Boyu. Underwater visible light communication sensing integrated waveform design based on OTFS-LFM[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2023.0770 |
[3] | YE Yi-qiao, SHEN Hai-dong, LIU Yan-bin, GAO Ze-peng, KONG Xiang, CHEN Jin-bao. Integrated design of hypersonic aircraft wing layout and mission trajectory[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2023.0650 |
[4] | ZHANG W,GAO Z H,WANG C,et al. Efficient surrogate-based aerodynamic optimization with parameter-free adaptive penalty function[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(4):1262-1272 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0451. |
[5] | ZHANG Hua-bo, GUO Ying-qing, LI Gui-cai, ZHAO Wan-li, YE Peng. Modeling and parameter design methodology for component-level performance model of ducted ram air generation turbine[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2023.0787 |
[6] | SONG W,WANG Q,HE G Y. Visual calculation method of wing slipstream zone area on tiltrotor aircraft[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(8):2492-2502 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0676. |
[7] | ZHOU B J,YU C Q,TAN L L,et al. Fast leveling control technology of vehicle platform based on interference compensation[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(6):1495-1503 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0447. |
[8] | ZHANG P,ZHOU Q X,YU H Q,et al. Fast detection method of mental fatigue based on EEG signal characteristics[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(1):145-154 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0211. |
[9] | LEI Chao-hui, YANG Chao, SONG Chen. Optimization design of active aeroelastic wing with variable camber[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2023.0623 |
[10] | ZHOU Quan-zhi, YANG You-xu, SUN Lu-bin, ZHANG Xing-cui, WU Yi-fei, HUO Meng-wen. Aeroelastic Optimization Design of SpaRibs Wing Structure[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2023.0343 |
[11] | HE T Y,DONG Y,WANG H,et al. Design and optimization of modular parabolic deployable mechanism[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(9):2473-2481 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0652. |
[12] | ZHANG K Q,ZHOU X F,MEN X H,et al. Three-dimensional integrated guidance and control design with fixed-time convergence[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(4):842-852 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0360. |
[13] | LIN J Z,ZHOU L,WU P,et al. Rapid prediction technology of missile aerodynamic characteristics based on PINN model[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(10):2669-2678 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0738. |
[14] | XU X Y,YAN G R,LEI Y. Surface quality optimization based on mutative scale chaos algorithm[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(12):3328-3334 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0070. |
[15] | SU Donglin, CUI Shuo, BAI Jiangfei, LI Yaoyao. Fast prediction method for radiated and scattered coupled fields in complex electromagnetic environment[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(9): 1553-1560. doi: 10.13700/j.bh.1001-5965.2022.0705 |
[16] | WU Yue, XIE Changchuan, YANG Chao, An Chao. Optimal design of motion parameters of flapping wing[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(7): 1324-1331. doi: 10.13700/j.bh.1001-5965.2021.0593 |
[17] | ZHANG Wei, WANG Qiang, LU Jiachen, YAN Chao. Robust optimization design under geometric uncertainty based on PCA-HicksHenne method[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(12): 2473-2481. doi: 10.13700/j.bh.1001-5965.2021.0142 |
[18] | DU Mo, MENG Bao, PAN Feng, WAN Min. Optimal design of printed circuit heat exchanger considering manufacturing constraints[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(10): 1994-2005. doi: 10.13700/j.bh.1001-5965.2021.0045 |
[19] | KANG Rui, LIU Haoran, ZHANG Qingyuan, YU Li, ZHAI Guofu. Function oriented belief reliability design and optimization of new torsion spring electrical connectors[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(9): 1745-1756. doi: 10.13700/j.bh.1001-5965.2022.0323 |
[20] | LI Wen, CAI Yongqing, CHEN Mengfan, LIU Peng. Optical path simulation and design of NO rapid detection optical cavity structure[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(11): 2146-2152. doi: 10.13700/j.bh.1001-5965.2021.0105 |