Volume 48 Issue 2
Feb.  2022
Turn off MathJax
Article Contents
TANG Hongmei, TANG Wenzhong, LI Ruichen, et al. Classification of network public opinion propagation pattern based on variational reasoning[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(2): 209-216. doi: 10.13700/j.bh.1001-5965.2020.0538(in Chinese)
Citation: TANG Hongmei, TANG Wenzhong, LI Ruichen, et al. Classification of network public opinion propagation pattern based on variational reasoning[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(2): 209-216. doi: 10.13700/j.bh.1001-5965.2020.0538(in Chinese)

Classification of network public opinion propagation pattern based on variational reasoning

doi: 10.13700/j.bh.1001-5965.2020.0538
Funds:

Natural Science Foundation of Xinjiang Uygur Autonomous Region 2020D01A95

More Information
  • Corresponding author: WANG Yanyang, E-mail: wangyanyang@buaa.edu.cn
  • Received Date: 22 Sep 2020
  • Accepted Date: 23 Oct 2020
  • Publish Date: 20 Feb 2022
  • With the rapid development of online social media, the analysis of the dissemination mode of public opinion information has become a research hotspot.Aiming at the problem of low classification accuracy of small sample data multi-path generation in the classification task of the network public opinion spreading pattern, the definition of the knowledge graph structure in the field of public opinion dissemination is proposed, builds a public opinion dissemination knowledge graph and public opinion dissemination analysis task data set based on Weibo data, uses the GraphDIVA model to classify public opinion propagation patterns, and conducts a 25-sample test experiment of public opinion propagation pattern classification in the self-built data set. The results show that, after 20 rounds of training, the classification accuracy rate of the model has increased from 76% to 89.4%. It can be seen that the GraphDIVA model has a better effect in reducing the number of training and improving the classification accuracy rate.

     

  • loading
  • [1]
    童亚拉. 突发群体性事件网络舆情信息传播复杂网络预测模型分析[J]. 微型电脑应用, 2011, 27(2): 28-29. doi: 10.3969/j.issn.1007-757X.2011.02.010

    TONG Y L. Analysis of forecasting module of information communication in mass emergency using theory of comple[J]. Microcomputer Applications, 2011, 27(2): 28-29(in Chinese). doi: 10.3969/j.issn.1007-757X.2011.02.010
    [2]
    徐增林, 盛泳潘, 贺丽荣, 等. 知识图谱技术综述[J]. 电子科技大学学报, 2016(4): 589-606. doi: 10.3969/j.issn.1001-0548.2016.04.012

    XU Z L, SHENG Y P, HE L R, et al. Review on knowledge graph techniques[J]. Journal of University of Electronic Science and Technology of China, 2016(4): 589-606(in Chinese). doi: 10.3969/j.issn.1001-0548.2016.04.012
    [3]
    王晰巍, 邢云菲, 赵丹, 等. 基于社会网络分析的移动环境下网络舆情信息传播研究——以新浪微博"雾霾"话题为例[J]. 图书情报工作, 2015, 59(7): 14-22. https://www.cnki.com.cn/Article/CJFDTOTAL-TSQB201507005.htm

    WANG X W, XING Y F, ZHAO D, et al. The study of network public opinion dissemination with social network analysis under the mobile environment: A case of "Haze" in Sina Micro-blog[J]. Library and Information Service, 2015, 59(7): 14-22(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-TSQB201507005.htm
    [4]
    崔树娟, 宾晟, 孙更新, 等. 基于大数据分析的多关系社交网络舆情传播模型研究[J]. 中南民族大学学报(自然科学版), 2018, 37(2): 118-124. https://www.cnki.com.cn/Article/CJFDTOTAL-ZNZK201802025.htm

    CUI S J, BIN S, SUN G X, et al. Public opinion propagation model based on big data analytics in multiple relationships social network[J]. Journal of South-Central University for Nationalities(Natural Science Edition), 2018, 37(2): 118-124(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-ZNZK201802025.htm
    [5]
    王兰成, 娄国哲. 大数据环境下涉军网络舆情的知识图谱服务研究[J]. 中华医学图书情报杂志, 2018, 27(4): 4-9. https://www.cnki.com.cn/Article/CJFDTOTAL-YXTS201804001.htm

    WANG L C, LOU G Z. Knowledge graph service for military network opinion in the big data era[J]. Chinese Journal of Medical Library and Information Science, 2018, 27(4): 4-9(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-YXTS201804001.htm
    [6]
    马哲坤, 涂艳. 基于知识图谱的网络舆情突发话题内容监测研究[J]. 情报科学, 2019, 37(2): 33-39. https://www.cnki.com.cn/Article/CJFDTOTAL-QBKX201902006.htm

    MA Z K, TU Y. Online emerging topic content monitoring based on knowledge graph[J]. Information Science, 2019, 37(2): 33-39(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-QBKX201902006.htm
    [7]
    CHEN W, XIONG W, YAN X, et al. Variational knowledge graph reasoning[EB/OL]. (2018-10-23)[2020-09-01]. https://arxiv.org/abs/1803.06581.
    [8]
    KINGMA D P, WELLING M. Auto-encoding variational Bayes[EB/OL]. (2014-05-01)[2020-09-01]. https://arxiv.org/abs/1312.6114v10.
    [9]
    HAMILTON W, YING Z, LESKOVEC J. Inductive representation learning on large graphs[C]//Advances in Neural Information Processing Systems, 2017: 1024-1034.
    [10]
    KIPF T N, WELLING M. Semi-supervised classification with graph convolutional networks[EB/OL]. (2017-02-22)[2020-09-01]. https://arxiv.org/abs/1609.02907.
    [11]
    HOCHREITER S, SCHMIDHUBER J. Long short-term memory[J]. Neural Computation, 1997, 9(8): 1735-1780. doi: 10.1162/neco.1997.9.8.1735
    [12]
    娄国哲, 王兰成. 基于知识图谱的网络舆情知识组织方法研究[J]. 情报理论与实践, 2019, 42(1): 58-64. https://www.cnki.com.cn/Article/CJFDTOTAL-QBLL201901010.htm

    LOU G Z, WANG L C. Network public opinion knowledge organizing method based on knowledge map[J]. Information Studies: Theory & Application, 2019, 42(1): 58-64(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-QBLL201901010.htm
    [13]
    刘继, 李磊. 基于微博用户转发行为的舆情信息传播模式分析[J]. 情报杂志, 2013, 32(7): 78-81. doi: 10.3969/j.issn.1002-1965.2013.07.016

    LIU J, LI L. Analysis of public opinion propagation mode based on repost behavior of microblog users[J]. Journal of Intelligence, 2013, 32(7): 78-81(in Chinese). doi: 10.3969/j.issn.1002-1965.2013.07.016
    [14]
    PRADIP K S, SHAILENDRA R, JONG H P. Multilevel learning based modeling for link prediction and users consumption preference in online social networks[J]. Future Generation Computer Systems, 2019, 93: 952-961. doi: 10.1016/j.future.2017.08.031
    [15]
    XIONG W, HOANG T, WANG W Y. DeepPath: A reinforcement learning method for knowledge graph reasoning[EB/OL]. (2018-07-07)[2020-09-01]. https://arxiv.org/abs/1707.06690v3.
    [16]
    LIN Y, LIU Z, SUN M, et al. Learning entity and relation embeddings for knowledge graph completion[C]//Twenty-ninth AAAI Conference on Artificial Intelligence, 2015: 2181-2182.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)  / Tables(12)

    Article Metrics

    Article views(583) PDF downloads(65) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return