Jia Yuhong, Wu Xiaojuan. Fuzzy control of landing gear based on MR damper[J]. Journal of Beijing University of Aeronautics and Astronautics, 2007, 33(11): 1264-1267. (in Chinese)
Citation: TANG Hongmei, TANG Wenzhong, LI Ruichen, et al. Classification of network public opinion propagation pattern based on variational reasoning[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(2): 209-216. doi: 10.13700/j.bh.1001-5965.2020.0538(in Chinese)

Classification of network public opinion propagation pattern based on variational reasoning

doi: 10.13700/j.bh.1001-5965.2020.0538
Funds:

Natural Science Foundation of Xinjiang Uygur Autonomous Region 2020D01A95

More Information
  • Corresponding author: WANG Yanyang, E-mail: wangyanyang@buaa.edu.cn
  • Received Date: 22 Sep 2020
  • Accepted Date: 23 Oct 2020
  • Publish Date: 20 Feb 2022
  • With the rapid development of online social media, the analysis of the dissemination mode of public opinion information has become a research hotspot.Aiming at the problem of low classification accuracy of small sample data multi-path generation in the classification task of the network public opinion spreading pattern, the definition of the knowledge graph structure in the field of public opinion dissemination is proposed, builds a public opinion dissemination knowledge graph and public opinion dissemination analysis task data set based on Weibo data, uses the GraphDIVA model to classify public opinion propagation patterns, and conducts a 25-sample test experiment of public opinion propagation pattern classification in the self-built data set. The results show that, after 20 rounds of training, the classification accuracy rate of the model has increased from 76% to 89.4%. It can be seen that the GraphDIVA model has a better effect in reducing the number of training and improving the classification accuracy rate.

     

  • [1]
    童亚拉. 突发群体性事件网络舆情信息传播复杂网络预测模型分析[J]. 微型电脑应用, 2011, 27(2): 28-29. doi: 10.3969/j.issn.1007-757X.2011.02.010

    TONG Y L. Analysis of forecasting module of information communication in mass emergency using theory of comple[J]. Microcomputer Applications, 2011, 27(2): 28-29(in Chinese). doi: 10.3969/j.issn.1007-757X.2011.02.010
    [2]
    徐增林, 盛泳潘, 贺丽荣, 等. 知识图谱技术综述[J]. 电子科技大学学报, 2016(4): 589-606. doi: 10.3969/j.issn.1001-0548.2016.04.012

    XU Z L, SHENG Y P, HE L R, et al. Review on knowledge graph techniques[J]. Journal of University of Electronic Science and Technology of China, 2016(4): 589-606(in Chinese). doi: 10.3969/j.issn.1001-0548.2016.04.012
    [3]
    王晰巍, 邢云菲, 赵丹, 等. 基于社会网络分析的移动环境下网络舆情信息传播研究——以新浪微博"雾霾"话题为例[J]. 图书情报工作, 2015, 59(7): 14-22.

    WANG X W, XING Y F, ZHAO D, et al. The study of network public opinion dissemination with social network analysis under the mobile environment: A case of "Haze" in Sina Micro-blog[J]. Library and Information Service, 2015, 59(7): 14-22(in Chinese).
    [4]
    崔树娟, 宾晟, 孙更新, 等. 基于大数据分析的多关系社交网络舆情传播模型研究[J]. 中南民族大学学报(自然科学版), 2018, 37(2): 118-124.

    CUI S J, BIN S, SUN G X, et al. Public opinion propagation model based on big data analytics in multiple relationships social network[J]. Journal of South-Central University for Nationalities(Natural Science Edition), 2018, 37(2): 118-124(in Chinese).
    [5]
    王兰成, 娄国哲. 大数据环境下涉军网络舆情的知识图谱服务研究[J]. 中华医学图书情报杂志, 2018, 27(4): 4-9.

    WANG L C, LOU G Z. Knowledge graph service for military network opinion in the big data era[J]. Chinese Journal of Medical Library and Information Science, 2018, 27(4): 4-9(in Chinese).
    [6]
    马哲坤, 涂艳. 基于知识图谱的网络舆情突发话题内容监测研究[J]. 情报科学, 2019, 37(2): 33-39.

    MA Z K, TU Y. Online emerging topic content monitoring based on knowledge graph[J]. Information Science, 2019, 37(2): 33-39(in Chinese).
    [7]
    CHEN W, XIONG W, YAN X, et al. Variational knowledge graph reasoning[EB/OL]. (2018-10-23)[2020-09-01].
    [8]
    KINGMA D P, WELLING M. Auto-encoding variational Bayes[EB/OL]. (2014-05-01)[2020-09-01].
    [9]
    HAMILTON W, YING Z, LESKOVEC J. Inductive representation learning on large graphs[C]//Advances in Neural Information Processing Systems, 2017: 1024-1034.
    [10]
    KIPF T N, WELLING M. Semi-supervised classification with graph convolutional networks[EB/OL]. (2017-02-22)[2020-09-01].
    [11]
    HOCHREITER S, SCHMIDHUBER J. Long short-term memory[J]. Neural Computation, 1997, 9(8): 1735-1780. doi: 10.1162/neco.1997.9.8.1735
    [12]
    娄国哲, 王兰成. 基于知识图谱的网络舆情知识组织方法研究[J]. 情报理论与实践, 2019, 42(1): 58-64.

    LOU G Z, WANG L C. Network public opinion knowledge organizing method based on knowledge map[J]. Information Studies: Theory & Application, 2019, 42(1): 58-64(in Chinese).
    [13]
    刘继, 李磊. 基于微博用户转发行为的舆情信息传播模式分析[J]. 情报杂志, 2013, 32(7): 78-81. doi: 10.3969/j.issn.1002-1965.2013.07.016

    LIU J, LI L. Analysis of public opinion propagation mode based on repost behavior of microblog users[J]. Journal of Intelligence, 2013, 32(7): 78-81(in Chinese). doi: 10.3969/j.issn.1002-1965.2013.07.016
    [14]
    PRADIP K S, SHAILENDRA R, JONG H P. Multilevel learning based modeling for link prediction and users consumption preference in online social networks[J]. Future Generation Computer Systems, 2019, 93: 952-961. doi: 10.1016/j.future.2017.08.031
    [15]
    XIONG W, HOANG T, WANG W Y. DeepPath: A reinforcement learning method for knowledge graph reasoning[EB/OL]. (2018-07-07)[2020-09-01].
    [16]
    LIN Y, LIU Z, SUN M, et al. Learning entity and relation embeddings for knowledge graph completion[C]//Twenty-ninth AAAI Conference on Artificial Intelligence, 2015: 2181-2182.
  • Relative Articles

    [1]BAI He, LI Yu, HAO Ming, XU Tingting. Graph neural network recommendation algorithm fused with dual-channel attention and time encoding[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2024.0795
    [2]HU X,CHEN J M,LI H F. Software security vulnerability patterns based on ontology[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(10):3084-3099 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0783.
    [3]WANG T,YAN H B,LANG B. Threat intelligence attribution method based on graph attention mechanism[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(7):2293-2303 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0590.
    [4]WU T X,JI X,WANG H G,et al. Relation extraction based on fusion of graph structure and sequence features[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(9):2763-2771 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0706.
    [5]XU Cong, SHI Mengxin, WANG Hongfeng, JIA Qingyu, ZHI Jia, YANG Jiasen. A prediction method for matching between in-orbit satellites and ITU satellite network filings based on knowledge graph[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2024.0217
    [6]GAO Fang-zheng, WANG Jia-hui, DUAN Liang, YUE Kun, LI Zhong-bin. Folklore Knowledge Graph Completion by Fusing Neighborhood Information[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2023.0791
    [7]TANG Rong-chuan, XU Qiu-cheng, TANG Wen-yi, ZHAI Fei-fei, ZHOU Yu. Multilingual knowledge graph completion without aligned entity pairs[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2023.0709
    [8]CHEN X P,WANG J F,ZHANG H,et al. Construction and application of knowledge graph in LOX/LH2 engine domain[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(3):821-830 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0333.
    [9]HAN H,HAO J,ZHANG Q K,et al. Multi-source knowledge fusion model for aspect-based sentiment analysis[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(9):2688-2695 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0728.
    [10]LI X Y,FANG Q,Hu J,et al. Multi-hop knowledge graph question answering based on deformed graph matching[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(2):529-534 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0375.
    [11]JI X,WU T X,WANG H G,et al. Attribute aggregation entity alignment based on multi-channel graph neural network[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(9):2791-2799 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0703.
    [12]WU C,ZHANG L,TANG X L,et al. Construction and application of fault knowledge graph for aero-engine lubrication system[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(4):1336-1346 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0434.
    [13]JI X,WU T X,YANG Z W,et al. Power equipment defect prediction based on temporary knowledge graph[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(10):3131-3138 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0801.
    [14]LI Z X,LIU C,WU S H,et al. Segmentation extraction of feature points for time series pattern matching[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(7):1593-1599 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0546.
    [15]PENG Yating, WEN Xiangxi, WU Minggong, YANG Zhiwei, WANG Nan. Complex network-based air traffic complexity analysis in TBO[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2023.0231
    [16]NI Wen-kai, PENG Shu-fan, DU Yan-hui. Identification of induced information for personalized recommendations based on knowledge graph[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2023.0475
    [17]ZHENG Yuxiang, HAO Pengyi, WU Dong'en, BAI Cong. Medical image segmentation based on multi-layer features and spatial information distillation[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(8): 1409-1417. doi: 10.13700/j.bh.1001-5965.2021.0504
    [18]JIANG Yu, YANG Chao, WU Zhigang. Mechanism analysis of a new aeroservoelastic instability mode[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(7): 1314-1323. doi: 10.13700/j.bh.1001-5965.2021.0571
    [19]LI Xiang-yue, FANG Quan, HU Jun, QIAN Sheng-sheng, XU Chang-sheng. Multi-hop Knowledge Graph Question Answering Based on Deformed Graph Matching[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2022-0375
    [20]LIU Danyang, FANG Quan, ZHANG Xiaowei, HU Jun, QIAN Shengsheng, XU Changsheng. Knowledge graph completion based on graph contrastive attention network[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(8): 1428-1435. doi: 10.13700/j.bh.1001-5965.2021.0523
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)  / Tables(12)

    Article Metrics

    Article views(662) PDF downloads(66) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return