Citation: | TANG Hongmei, TANG Wenzhong, LI Ruichen, et al. Classification of network public opinion propagation pattern based on variational reasoning[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(2): 209-216. doi: 10.13700/j.bh.1001-5965.2020.0538(in Chinese) |
With the rapid development of online social media, the analysis of the dissemination mode of public opinion information has become a research hotspot.Aiming at the problem of low classification accuracy of small sample data multi-path generation in the classification task of the network public opinion spreading pattern, the definition of the knowledge graph structure in the field of public opinion dissemination is proposed, builds a public opinion dissemination knowledge graph and public opinion dissemination analysis task data set based on Weibo data, uses the GraphDIVA model to classify public opinion propagation patterns, and conducts a 25-sample test experiment of public opinion propagation pattern classification in the self-built data set. The results show that, after 20 rounds of training, the classification accuracy rate of the model has increased from 76% to 89.4%. It can be seen that the GraphDIVA model has a better effect in reducing the number of training and improving the classification accuracy rate.
[1] |
童亚拉. 突发群体性事件网络舆情信息传播复杂网络预测模型分析[J]. 微型电脑应用, 2011, 27(2): 28-29. doi: 10.3969/j.issn.1007-757X.2011.02.010
TONG Y L. Analysis of forecasting module of information communication in mass emergency using theory of comple[J]. Microcomputer Applications, 2011, 27(2): 28-29(in Chinese). doi: 10.3969/j.issn.1007-757X.2011.02.010
|
[2] |
徐增林, 盛泳潘, 贺丽荣, 等. 知识图谱技术综述[J]. 电子科技大学学报, 2016(4): 589-606. doi: 10.3969/j.issn.1001-0548.2016.04.012
XU Z L, SHENG Y P, HE L R, et al. Review on knowledge graph techniques[J]. Journal of University of Electronic Science and Technology of China, 2016(4): 589-606(in Chinese). doi: 10.3969/j.issn.1001-0548.2016.04.012
|
[3] |
王晰巍, 邢云菲, 赵丹, 等. 基于社会网络分析的移动环境下网络舆情信息传播研究——以新浪微博"雾霾"话题为例[J]. 图书情报工作, 2015, 59(7): 14-22. https://www.cnki.com.cn/Article/CJFDTOTAL-TSQB201507005.htm
WANG X W, XING Y F, ZHAO D, et al. The study of network public opinion dissemination with social network analysis under the mobile environment: A case of "Haze" in Sina Micro-blog[J]. Library and Information Service, 2015, 59(7): 14-22(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-TSQB201507005.htm
|
[4] |
崔树娟, 宾晟, 孙更新, 等. 基于大数据分析的多关系社交网络舆情传播模型研究[J]. 中南民族大学学报(自然科学版), 2018, 37(2): 118-124. https://www.cnki.com.cn/Article/CJFDTOTAL-ZNZK201802025.htm
CUI S J, BIN S, SUN G X, et al. Public opinion propagation model based on big data analytics in multiple relationships social network[J]. Journal of South-Central University for Nationalities(Natural Science Edition), 2018, 37(2): 118-124(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-ZNZK201802025.htm
|
[5] |
王兰成, 娄国哲. 大数据环境下涉军网络舆情的知识图谱服务研究[J]. 中华医学图书情报杂志, 2018, 27(4): 4-9. https://www.cnki.com.cn/Article/CJFDTOTAL-YXTS201804001.htm
WANG L C, LOU G Z. Knowledge graph service for military network opinion in the big data era[J]. Chinese Journal of Medical Library and Information Science, 2018, 27(4): 4-9(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-YXTS201804001.htm
|
[6] |
马哲坤, 涂艳. 基于知识图谱的网络舆情突发话题内容监测研究[J]. 情报科学, 2019, 37(2): 33-39. https://www.cnki.com.cn/Article/CJFDTOTAL-QBKX201902006.htm
MA Z K, TU Y. Online emerging topic content monitoring based on knowledge graph[J]. Information Science, 2019, 37(2): 33-39(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-QBKX201902006.htm
|
[7] |
CHEN W, XIONG W, YAN X, et al. Variational knowledge graph reasoning[EB/OL]. (2018-10-23)[2020-09-01]. https://arxiv.org/abs/1803.06581.
|
[8] |
KINGMA D P, WELLING M. Auto-encoding variational Bayes[EB/OL]. (2014-05-01)[2020-09-01]. https://arxiv.org/abs/1312.6114v10.
|
[9] |
HAMILTON W, YING Z, LESKOVEC J. Inductive representation learning on large graphs[C]//Advances in Neural Information Processing Systems, 2017: 1024-1034.
|
[10] |
KIPF T N, WELLING M. Semi-supervised classification with graph convolutional networks[EB/OL]. (2017-02-22)[2020-09-01]. https://arxiv.org/abs/1609.02907.
|
[11] |
HOCHREITER S, SCHMIDHUBER J. Long short-term memory[J]. Neural Computation, 1997, 9(8): 1735-1780. doi: 10.1162/neco.1997.9.8.1735
|
[12] |
娄国哲, 王兰成. 基于知识图谱的网络舆情知识组织方法研究[J]. 情报理论与实践, 2019, 42(1): 58-64. https://www.cnki.com.cn/Article/CJFDTOTAL-QBLL201901010.htm
LOU G Z, WANG L C. Network public opinion knowledge organizing method based on knowledge map[J]. Information Studies: Theory & Application, 2019, 42(1): 58-64(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-QBLL201901010.htm
|
[13] |
刘继, 李磊. 基于微博用户转发行为的舆情信息传播模式分析[J]. 情报杂志, 2013, 32(7): 78-81. doi: 10.3969/j.issn.1002-1965.2013.07.016
LIU J, LI L. Analysis of public opinion propagation mode based on repost behavior of microblog users[J]. Journal of Intelligence, 2013, 32(7): 78-81(in Chinese). doi: 10.3969/j.issn.1002-1965.2013.07.016
|
[14] |
PRADIP K S, SHAILENDRA R, JONG H P. Multilevel learning based modeling for link prediction and users consumption preference in online social networks[J]. Future Generation Computer Systems, 2019, 93: 952-961. doi: 10.1016/j.future.2017.08.031
|
[15] |
XIONG W, HOANG T, WANG W Y. DeepPath: A reinforcement learning method for knowledge graph reasoning[EB/OL]. (2018-07-07)[2020-09-01]. https://arxiv.org/abs/1707.06690v3.
|
[16] |
LIN Y, LIU Z, SUN M, et al. Learning entity and relation embeddings for knowledge graph completion[C]//Twenty-ninth AAAI Conference on Artificial Intelligence, 2015: 2181-2182.
|