Volume 48 Issue 1
Jan.  2022
Turn off MathJax
Article Contents
LUO Jingwen, QIN Shiyin. FastSLAM for mobile robot based on box particle filter with intelligence optimization[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(1): 53-66. doi: 10.13700/j.bh.1001-5965.2020.0549(in Chinese)
Citation: LUO Jingwen, QIN Shiyin. FastSLAM for mobile robot based on box particle filter with intelligence optimization[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(1): 53-66. doi: 10.13700/j.bh.1001-5965.2020.0549(in Chinese)

FastSLAM for mobile robot based on box particle filter with intelligence optimization

doi: 10.13700/j.bh.1001-5965.2020.0549
Funds:

National Nature Science Foundation of China 62063036

Research Foundation for Doctor of Yunnan Normal University 01000205020503115

More Information
  • Corresponding author: LUO Jingwen, E-mail:by1503117@buaa.edu.cn
  • Received Date: 25 Sep 2020
  • Accepted Date: 13 Nov 2020
  • Publish Date: 20 Jan 2022
  • The traditional FastSLAM algorithm requires a large number of particles to build the map, thus resulting in high computational complexity and difficulty in improving the estimation accuracy. In view of these problems, an algorithm of FastSLAM for mobile robot is presented based on box particle filter with intelligence optimization (IOBPF). First, the dynamic optimization mechanism of firefly algorithm (FA) is applied to the box particle filter (BPF), and the formulas of fluorescence brightness updating, attraction calculation and position updating of box particle are constructed, which makes the box particles move toward the high-likelihood region intelligently and avoid the phenomenon of box particle degeneracy. Then, the improved BPF with intelligence optimization is utilized to estimate the pose of robot, and the extended interval Kalman filter (EIKF) is employed to complete the map building and updating. The results of model simulation and entity experiment of mobile robot show that the intelligent FastSLAM algorithm in this paper can effectively improve the performance of box particles and reduce the number of particles required for map construction, thus significantly improving the positioning accuracy and robustness of map construction.

     

  • loading
  • [1]
    王忠立, 赵杰, 蔡鹤皋. 大规模环境下基于图优化SLAM的图构建方法[J]. 哈尔滨工业大学学报, 2015, 47(1): 75-85. doi: 10.3969/j.issn.1009-1971.2015.01.011

    WANG Z L, ZHAO J, CAI H G. A survey of front-end method for graph-based SLAM under large-scale environment[J]. Journal of Harbin Institute of Technology, 2015, 47(1): 75-85(in Chinese). doi: 10.3969/j.issn.1009-1971.2015.01.011
    [2]
    SMITH R C, CHEESEMAN P. On the representation and estimation of spatial uncertainty[J]. International Journal of Robotics Research, 1986, 5(4): 56-68. doi: 10.1177/027836498600500404
    [3]
    HOLMES S A, KLEIN G, MURRAY D W. An O(N2) square root unscented Kalman filter for visual simultaneous localization and mapping[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2009, 31(7): 1251-1263. doi: 10.1109/TPAMI.2008.189
    [4]
    DOUCET A, DE FREITAS N, MURPHY K, et al. Rao-Blackwellised particle filtering for dynamic Bayesian networks[M]//DOUCET A, DE FREITAS N, GORDON N. Sequential Monte Carlo method in practice. Berlin: Springer, 2001: 499-515.
    [5]
    MONTEMERLO M, THRUN S, KOLLER D, et al. FastSLAM: A factored solution to the simultaneous localization and mapping problem[C]//Proceedings of the National Conference on Artificial Intelligence, 2002: 593-598.
    [6]
    MONTEMERLO M, THRUN S, ROLLER D, et al. FastSLAM 2.0: An improved particle filtering algorithm for simultaneous localization and mapping that provably converges[C]//Proceeding of the International Joint Conference on Artificial Intelligence, 2003: 1151-1156.
    [7]
    ELIAZAR A, PARR R. DP-SLAM: Fast, robust simultaneous localization and mapping without predetermined landmarks[C]//Proceedings of the International Joint Conference on Artificial Intelligence, 2003: 1135-1142.
    [8]
    HAHNEL D, BURGARD W, FOX D, et al. An efficient fastSLAM algorithm for generating maps of large-scale cyclic environments from raw laser range measurements[C]//International Conference on Intelligent Robots and Systems. Piscataway: IEEE Press, 2003, 1: 206-211.
    [9]
    GRISETTI G, STACHNISS C, BURGARD W. Improved techniques for grid mapping with Rao-Blackwellized particle filters[J]. IEEE Transactions on Robotics, 2007, 23(1): 34-46. doi: 10.1109/TRO.2006.889486
    [10]
    祝继华, 郑南宁, 袁泽剑, 等. 基于ICP算法和粒子滤波的未知环境地图创建[J]. 自动化学报, 2009, 35(8): 1107-1113. https://www.cnki.com.cn/Article/CJFDTOTAL-MOTO200908013.htm

    ZHU J H, ZHENG N N, YUAN Z J, et al. A SLAM approach by combining ICP algorithm and particle filter[J]. Acta Automatica Sinica, 2009, 35(8): 1107-1113(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-MOTO200908013.htm
    [11]
    BAILEY T, NIETO J, NEBOT E. Consistency of the FastSLAM algorithm[C]//IEEE International Conference on Robotics and Automation (ICRA). Piscataway: IEEE Press, 2006: 424-429.
    [12]
    VINCKE B, LAMBERT A, ELOUARDI A. Guaranteed simultaneous localization and mapping algorithm using interval analysis[C] //International Conference on Control Automation Robotics and Vision. Piscataway: IEEE Press, 2018: 1409-1414.
    [13]
    ABDALLAH F, GNING A, BONNIFAIT P. Box particle filtering for nonlinear state estimation using interval analysis[J]. Automatica, 2008, 44(3): 807-815. doi: 10.1016/j.automatica.2007.07.024
    [14]
    李振兴, 刘进忙, 李松, 等. 基于箱式粒子滤波的群目标跟踪算法[J]. 自动化学报, 2015, 41(4): 785-798. https://www.cnki.com.cn/Article/CJFDTOTAL-MOTO201504010.htm

    LI Z X, LIU J M, LI S, et al. Group targets tracking algorithm based on box particle filter[J]. Acta Automatica Sinica, 2015, 41(4): 785-798(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-MOTO201504010.htm
    [15]
    GNING A, RISTIC B, MIHAYLOVA L. Bernoulli particle/box-particle filters for detection and tracking in the presence of triple measurement uncertainty[J]. IEEE Transactions on Signal Processing, 2012, 60(5): 2138-2151. doi: 10.1109/TSP.2012.2184538
    [16]
    YANG X S. Firefly algorithm, stochastic test functions and design optimization[J]. International Journal of Bio-Inspired Computation, 2010, 2(2): 78-84. doi: 10.1504/IJBIC.2010.032124
    [17]
    CHEN G, WANG J, SHIEH L S. Interval Kalman filtering[J]. IEEE Transactions on Aerospace and Electronic Systems, 1997, 33(1): 250-259. doi: 10.1109/7.570759
    [18]
    JAULIN L, KIEFFER M, DIDRIT O, et al. Applied interval analysis[M]. Berlin: Springer, 2001: 1-116.
    [19]
    GNING A, MIHAYLOVA L, ABDALLAH F. Mixture of uniform probability density functions for non-linear state estimation using interval analysis[C]//The 13th Conference on Information Fusion. Piscataway: IEEE Press, 2010: 1-8.
    [20]
    GNING A, RISTIC B, MIHAYLOVA L, et al. An introduction to box particle filtering[J]. IEEE Signal Processing Magazine, 2013, 30(4): 166-171. doi: 10.1109/MSP.2013.2254601
    [21]
    田梦楚, 薄煜明, 陈志敏, 等. 萤火虫算法智能优化粒子滤波[J]. 自动化学报, 2016, 42(1): 89-97. https://www.cnki.com.cn/Article/CJFDTOTAL-MOTO201601008.htm

    TIAN M M, BO Y M, CHEN Z M, et al. Firefly algorithm intelligence optimized particle filter[J]. Acta Automatica Sinica, 2016, 42(1): 89-97(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-MOTO201601008.htm
    [22]
    LI N, MA H, YANG C. Interval Kalman filter based RFID indoor positioning[C]//Control and Decision Conference. Piscataway: IEEE Press, 2016: 6958-6963.
    [23]
    LE Y, HE X F, XIAO R Y. MEMS IMU and GPS/Beidou integration navigation system using interval Kalman filter[J]. Applied Mechanics and Materials, 2014, 568-570: 970-975. doi: 10.4028/www.scientific.net/AMM.568-570.970
    [24]
    HE X F, VIK B. Use of extended interval Kalman filter on integrated GPS/INS system[C]//Proceedings of International Technical Meeting of the Satellite Division of the Institute of Navigation, 1999: 1907-1914.
    [25]
    万振刚. MINS/GPS组合导航系统若干关键技术研究[D]. 南京: 东南大学, 2005: 55-56.

    WAN Z G. Research on some key technologies of MINS/GPS integrated navigation system[D]. Nanjing: Southeast University, 2005: 55-56(in Chinese).
    [26]
    BAILEY T. SLAM simulations[DS/OL]. (2008-06-10)[2020-08-20]. http://www.personal.acfr.usyd.edu.au/tbailey/software/index.html.
    [27]
    KIM C, SAKTHIVEL R, WAN K C. Unscented fastSLAM: A robust and efficient solution to the SLAM problem[J]. IEEE Transactions on Robotics, 2008, 24(4): 808-820. doi: 10.1109/TRO.2008.924946
    [28]
    DUAN J M, LIU D, YU H X, et al. An improved FastSLAM algorithm for autonomous vehicle based on the strong tracking square root central difference Kalman filter[C]//2015 IEEE 18th International Conference on Intelligent Transportation Systems (ITSC 2015). Piscataway: IEEE Press, 2015: 693-698.
    [29]
    STACHNISS C. Robotic mapping and exploration[M]. Berlin: Springer, 2009: 10-16.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(13)  / Tables(3)

    Article Metrics

    Article views(471) PDF downloads(65) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return