Citation: | LU Ruirui, YU Haiyang, YANG Zhen, et al. User electricity consumption behavior mode analysis based on energy decomposition[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(2): 311-323. doi: 10.13700/j.bh.1001-5965.2020.0557(in Chinese) |
With the popularization of smart grids and the development of big data technology, more and more attention has been paid to the analysis of users' electricity consumption behavior through electricity consumption data. The existing energy decomposition methods cannot meet the high requirements for resolution and decomposition accuracy in practical applications, and the cluster analysis method is too rough and does not fully show the electricity consumption characteristics of each type of electrical appliances. In view of this, this paper proposes an analysis method of users' electricity consumption behavior based on energy decomposition. Based on the discriminative sparse coding algorithm model, firstly, to solve the problem that the regular term of
[1] |
DIECJMANN J, COOPERMAN A, BRODRICK J. Efficiency energy. Buildings energy data book[M]. Washington, D.C. : US Department of Energy, 2009.
|
[2] |
辛苗苗, 张延迟, 解大. 基于电力大数据的用户用电行为分析研究综述[J]. 电气自动化, 2019, 41(1): 1-4. doi: 10.3969/j.issn.1000-3886.2019.01.001
XIN M M, ZHANG Y C, XIE D. Summary of researches on consumer behavior analysis based on big power data[J]. Electrical Automation, 2019, 41(1): 1-4(in Chinese). doi: 10.3969/j.issn.1000-3886.2019.01.001
|
[3] |
HART G W. Nonintrusive appliance load monitoring[J]. Proceedings of the IEEE, 1992, 80(12): 1870-1891. doi: 10.1109/5.192069
|
[4] |
LAUGHMAN C, LEE K, COX R, et al. Power signature analysis[J]. IEEE Power and Energy Magazine, 2003, 1(2): 56-63. doi: 10.1109/MPAE.2003.1192027
|
[5] |
SHAW S R, ABLER C B, LEPARD R F, et al. Instrumentation for high performance nonintrusive electrical load monitoring[J]. Journal of Solar Energy Engineering, 1998, 120(3): 224-229. doi: 10.1115/1.2888073
|
[6] |
BERGES M, GOLDMAN E, MATTHEWS H S, et al. Learning systems for electric consumption of buildings[C]//International Workshop on Computing in Civil Engineering 2009. Reston: American Society of Civil Engineers, 2009: 1-10.
|
[7] |
PATEL S N, ROBERTSON T, KIENTZ J A, et al. At the flick of a switch: Detecting and classifying unique electrical events on the residential power line (nominated for the best paper award)[C]//International Conference on Ubiquitous Computing. Berlin: Springer, 2007: 271-288.
|
[8] |
ZEIFMAN M, ROTH K. Nonintrusive appliance load monitoring: Review and outlook[J]. IEEE Transactions on Consumer Electronics, 2011, 57(1): 76-84. doi: 10.1109/TCE.2011.5735484
|
[9] |
KOLTER J, BATRA S, NG A. Energy disaggregation via discriminative sparse coding[J]. Advances in Neural Information Processing Systems, 2010, 23: 1153-1161.
|
[10] |
KIM H, MARWAH M, ARLITT M, et al. Unsupervised disaggregation of low frequency power measurements[C]//Proceedings of the 2011 SIAM International Conference on Data Mining, 2011: 747-758.
|
[11] |
PARSON O, GHOSH S, WEAL M, et al. An unsupervised training method for non-intrusive appliance load monitoring[J]. Artificial Intelligence, 2014, 217: 1-19. doi: 10.1016/j.artint.2014.07.010
|
[12] |
KOLTER J Z, JAAKKOLA T. Approximate inference in additive factorial hmms with application to energy disaggregation[C]//Artificial Intelligence and Statistics, 2012: 1472-1482.
|
[13] |
KELLY J, KNOTTENBELT W. Neural NILM: Deep neural networks applied to energy disaggregation[C]//Proceedings of the 2nd ACM International Conference on Embedded Systems for Energy-Efficient Built Environments. New York: ACM, 2015: 55-64.
|
[14] |
SIROJAN T, PHUNG B T, AMBIKAIRAJAH E. Deep neural network based energy disaggregation[C]//2018 IEEE International Conference on Smart Energy Grid Engineering (SEGE). Piscataway: IEEE Press, 2018: 73-77.
|
[15] |
GAO Y, SCHAY A, HOU D Q, et al. Home appliance energy disaggregation using low frequency data and machine learning classifiers[C]//201716th IEEE International Conference on Machine Learning and Applications (ICMLA). Piscataway: IEEE Press, 2017: 76-83.
|
[16] |
BATRA N, SINGH A, WHITEHOUSE K. Gemello: Creating a detailed energy breakdown from just the monthly electricity bill[C]//Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM, 2016: 431-440.
|
[17] |
李培强, 李欣然, 陈辉华, 等. 基于模糊聚类的电力负荷特性的分类与综合[J]. 中国电机工程学报, 2005, 25(24): 73-78. doi: 10.3321/j.issn:0258-8013.2005.24.013
LI P Q, LI X R, CHEN H H, et al. The characteristics classification and synthesis of power load based on fuzzy clustering[J]. Proceedings of the CSEE, 2005, 25(24): 73-78(in Chinese). doi: 10.3321/j.issn:0258-8013.2005.24.013
|
[18] |
王璨, 冯勤超. 基于价值评价的电力用户分类研究[J]. 价值工程, 2009, 28(5): 64-67. doi: 10.3969/j.issn.1006-4311.2009.05.022
WANG C, FENG Q C. The research of power customers classification based on value assessment[J]. Value Engineering, 2009, 28(5): 64-67(in Chinese). doi: 10.3969/j.issn.1006-4311.2009.05.022
|
[19] |
李欣然, 姜学皎, 钱军, 等. 基于用户日负荷曲线的用电行业分类与综合方法[J]. 电力系统自动化, 2010, 34(10): 56-61. https://www.cnki.com.cn/Article/CJFDTOTAL-DLXT201010012.htm
LI X R, JIANG X J, QIAN J, et al. A classifying and synthesizing method of power consumer industry based on the daily load profile[J]. Automation of Electric Power Systems, 2010, 34(10): 56-61(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-DLXT201010012.htm
|
[20] |
ZHONG C L, SHAO J, ZHENG F, et al. Research on electricity consumption behavior of electric power users based on tag technology and clustering algorithm[C]//20185th International Conference on Information Science and Control Engineering (ICISCE). Piscataway: IEEE Press, 2018: 459-462.
|
[21] |
NORDAHL C, BOEVA V, GRAHN H, et al. Profiling of household residents' electricity consumption behavior using clustering analysis[C]//International Conference on Computational Science. Berlin: Springer, 2019: 779-786.
|
[22] |
LEE D D, SEUNG H S. Learning the parts of objects by non-negative matrix factorization[J]. Nature, 1999, 401(6755): 788-791. doi: 10.1038/44565
|
[23] |
OLSHAUSEN B A, FIELD D J. Emergence of simple-cell receptive field properties by learning a sparse code for natural images[J]. Nature, 1996, 381(6583): 607-609. doi: 10.1038/381607a0
|
[24] |
RAHIMPOUR A, QI H R, FUGATE D, et al. Non-intrusive energy disaggregation using non-negative matrix factorization with sum-to-k constraint[J]. IEEE Transactions on Power Systems, 2017, 32(6): 4430-4441. doi: 10.1109/TPWRS.2017.2660246
|
[25] |
TANG J, GAO H, HU X, et al. Exploiting homophily effect for trust prediction[C]//Proceedings of the 6th ACM Interhational Conference on Web Search and Data Mining. New York: ACM, 2013: 53-62.
|