Volume 48 Issue 3
Mar.  2022
Turn off MathJax
Article Contents
LIU Gang. Drag and lift acceleration commands rapid calculation and tracking guidance[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(3): 401-411. doi: 10.13700/j.bh.1001-5965.2020.0589(in Chinese)
Citation: LIU Gang. Drag and lift acceleration commands rapid calculation and tracking guidance[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(3): 401-411. doi: 10.13700/j.bh.1001-5965.2020.0589(in Chinese)

Drag and lift acceleration commands rapid calculation and tracking guidance

doi: 10.13700/j.bh.1001-5965.2020.0589
More Information
  • Corresponding author: LIU Gang, E-mail: lgiuang@21cn.com
  • Received Date: 19 Oct 2020
  • Accepted Date: 24 Jan 2021
  • Publish Date: 20 Mar 2022
  • For the gliding flight phase guidance problem of lifting vehicle, a drag and lift acceleration commands rapid calculation and tracking guidance method is proposed. Drag acceleration command is calculated directly by one-dimensional particle kinematics and weighting. By introducing the "virtual target" and "pseudo line of sight angle" concepts, proportional navigation is used in gliding flight phase to give the lift acceleration command. Using the monotonicity of the drag acceleration and the attack angle, the attack angle is used to track drag acceleration command. The bank angle is used to track drag acceleration command in a supplementary way in the early stage. After a given criterion is satisfied, the bank angle switches to track lift acceleration command. The azimuth angle control is realized by changing the sign of the bank angle according the reverse corridor border. The dynamic pressure, heat flow, and overload constraints can be satisfied by specific sensitive parameters design. The proposed method does not need reference trajectory or attack angle profile, and the amount of calculation is small. It can control the terminal velocity and height with high accuracy.

     

  • loading
  • [1]
    LU P. Predictor-corrector entry guidance for low-lifting vehicles[J]. Journal of Guidance, Control, and Dynamics, 2008, 31(4): 1067-1075. doi: 10.2514/1.32055
    [2]
    XUE S B, LU P. Constrained predictor-corrector entry guidance[J]. Journal of Guidance, Control, and Dynamics, 2010, 33(4): 7-8.
    [3]
    SHEN Z J, LU P. On-boardentry trajectory planning for sub-orbital flight[J]. Acta Astronautica, 2005, 56(6): 573-591. doi: 10.1016/j.actaastro.2004.10.005
    [4]
    SHEN Z J, LU P. Dynamic lateral entry guidance logic[J]. Journal of Guidance, Control, and Dynamics. 2004, 27(6): 11-12.
    [5]
    LU P. Entry trajectory optimization with analytical feedback bank angle law[C]//AIAA Guidance, Navigation and Control Conference and Exhibit. Reson: AIAA, 2008: 11-18.
    [6]
    LU P. Entry guidance: A unified method[J]. Journal of Guidance, Control, and Dynamics, 2014, 37(3): 713-728. doi: 10.2514/1.62605
    [7]
    LU P, SUSAN J S, GAVIN F M, et al. Verification of a fully numerical entry guidance algorithm[J]. Journal of Guidance, Control, and Dynamics, 2017, 40(2): 230-247. doi: 10.2514/1.G000327
    [8]
    LU P, CHRISTOPHER J C, MICHAEL A T, et al. Optimal aerocapture guidance[J]. Journal of Guidance, Control, and Dynamics, 2015, 38(4): 553-565. doi: 10.2514/1.G000713
    [9]
    赵頔, 沈作军. 基于在线迭代的自适应再入制导[J]. 北京航空航天大学学报, 2016, 42(7): 1526-1535. doi: 10.13700/j.bh.1001-5965.2015.0463

    ZHAO D, SHEN Z J. Adaptive reentry guidance based on on-board trajectory iterations[J]. Journal of Beijing University of Aeronautics and Astronautics, 2016, 42(7): 1526-1535(in Chinese). doi: 10.13700/j.bh.1001-5965.2015.0463
    [10]
    黄汉斌, 梁禄扬, 杨业. 基于阻力加速度倒数剖面的再入轨迹规划与制导方法[J]. 航空学报, 2018, 39(12): 322558. https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201812030.htm

    HUANG H B, LIANG L Y, YANG Y. Reentry trajectory planning and guidance method based on inverse drag acceleration[J]. Acta Aeranautica et Astronautica Sinica, 2018, 39(12): 322558(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201812030.htm
    [11]
    王涛, 张洪波, 朱如意, 等. 考虑阻力加速度的再入预测-校正制导算法[J]. 宇航学报, 2017, 38(2): 143-151. https://www.cnki.com.cn/Article/CJFDTOTAL-YHXB201702005.htm

    WANG T, ZHANG H B, ZHU R Y, et al. Predictor-corrector reentry guidance based on drag acceleration[J]. Journal of astronautics, 2017, 38(2): 143-151(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-YHXB201702005.htm
    [12]
    魏毅寅, 李瑜, 段广仁. 远程滑翔导弹滑翔段制导算法研究[J], 宇航学报, 2009, 30(2): 481-485. doi: 10.3873/j.issn.1000-1328.2009.02.014

    WEI Y Y, LI Y, DUAN G R. Research on guidance method of glide phase for long range glide missile[J]. Journal of Astronautics, 2009, 30(2): 481-485(in Chinese). doi: 10.3873/j.issn.1000-1328.2009.02.014
    [13]
    蔺君, 黄盘兴, 何英姿. 高升阻比再入飞行器阻力加速度设计及跟踪制导[J]. 空间控制技术与应用, 2020, 46(1): 17-23. https://www.cnki.com.cn/Article/CJFDTOTAL-KJKZ202001003.htm

    LIN J, HUANG P X, HE Y Z. Drag acceleration design and tracking guidance for high L/D reentry vehicle[J]. Aerospace Control and Application, 2020, 46(1): 17-23(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-KJKZ202001003.htm
    [14]
    李惠峰. 高超声速飞行器制导与控制技术[M]. 北京: 中国宇航出版社, 2012: 333-363.

    LI H F. Guide and control technology for hypersonic vehicle[M]. Beijing: China Aerospace Press, 2012: 333-363(in Chinese).
    [15]
    阎晓东, 王智. 高超声速无动力滑翔三维轨迹规划方法[J]. 北京理工大学学报, 2013, 33(7): 669-674. doi: 10.3969/j.issn.1001-0645.2013.07.003

    YAN X D, WANG Z. Three-dimensional trajectory planning method for hupersonic glide vehicles[J]. Transactions of Beijing Institute of Technology, 2013, 33(7): 669-674(in Chinese). doi: 10.3969/j.issn.1001-0645.2013.07.003
    [16]
    郭继峰, 傅瑜, 崔乃刚. 三维自主再入制导方法[J]. 控制与决策, 2013, 28(8): 689-694. https://www.cnki.com.cn/Article/CJFDTOTAL-KZYC201305009.htm

    GUO J F, FU Y, CUI N G. Three dimensional autonomous entry guidance method[J]. Control and Decision, 2013, 28(8): 689-694(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-KZYC201305009.htm
    [17]
    徐明亮, 陈克俊, 刘鲁华, 等, 高超声速飞行器准平衡滑翔自适应制导方法[J]. 中国科学: 技术科学, 2012, 42(4): 378-387. https://www.cnki.com.cn/Article/CJFDTOTAL-JEXK201204004.htm

    XU M L, CHEN K J, LIU L H, et al. Quasi-equilibrium glide adaptive guidance for hypersonic vehicles[J]. Sci China: Tech Sci, 2012, 42(4): 378-387(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JEXK201204004.htm
    [18]
    赵明, 李洪梁, 张维文, 等. 高超声速飞行器的解析式滑翔制导[J]. 战术导弹技术, 2018, 18(4): 78-83. https://www.cnki.com.cn/Article/CJFDTOTAL-ZSDD201804013.htm

    ZHAO M, LI H L, ZHANG W W, et al. Analytical guidance for hypersonic glide vehicles[J]. Tactical Missile Technology, 2018, 18(4): 78-83(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-ZSDD201804013.htm
    [19]
    YU W B, CHEN W C, JIANG Z G, et al. Omnidiretional autonomous entry guidance based on 3-D analytical flight formulae[J]. ISA Transactions, 2016, 65: 487-503. doi: 10.1016/j.isatra.2016.09.002
    [20]
    胡锦川, 陈万春. 平稳再入弹道设计方法[J]. 北京航空航天大学学报, 2015, 41(8): 1464-1475. doi: 10.13700/j.bh.1001-5965.2014.0023

    HU J C, CHEN W C. Steady reentry trajectory planning method for reentry vehicle[J]. Journal of Beijing University of Aeronautics and Astronautics, 2015, 41(8): 1464-1475(in Chinese). doi: 10.13700/j.bh.1001-5965.2014.0023
    [21]
    YU W B, CHEN W C. Guidance law with circular no fly zone constraint[J]. Nonlinear Dynamics, 2014, 78(3): 1953-1971. doi: 10.1007/s11071-014-1571-2
    [22]
    YANG Y, LIANG L Y, WU H, et al. Onboard and analytic prediction algorithm of the range-to-go for the lifting vehicle[C]//21st AIAA International Space Planesand Hypersonics Technologies Conference. Reston: AIAA, 2017.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(26)  / Tables(5)

    Article Metrics

    Article views(419) PDF downloads(85) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return