Li Minjiang, Gui Xingmin. Staggered finite volume method for turbomachinery viscous flow field numerical investigation[J]. Journal of Beijing University of Aeronautics and Astronautics, 2004, 30(06): 577-582. (in Chinese)
Citation: WANG Keyao, WANG Huiwen, ZHAO Qing, et al. A modified Mahalanobis distance discriminant method[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(5): 824-830. doi: 10.13700/j.bh.1001-5965.2020.0652(in Chinese)

A modified Mahalanobis distance discriminant method

doi: 10.13700/j.bh.1001-5965.2020.0652
Funds:

National Natural Science Foundation of China 71420107025

National Natural Science Foundation of China 11701023

More Information
  • Corresponding author: WANG Shanshan, E-mail: sswang@buaa.edu.cn
  • Received Date: 23 Nov 2020
  • Accepted Date: 22 Mar 2021
  • Publish Date: 20 May 2022
  • Mahalanobis distance discriminant method is an effective multivariate statistical analysis method based on the Mahalanobis distance. An important feature of the Mahalanobis distance is its introduction of the inverse of covariance matrix, which avoids the disturbance to the distance measurement from the scales of the attribute variables and the correlations among these variables. However, when there is multicollinearity among the attribute variables, the singularity of the covariance matrix will affect the stability of the inverse matrix estimation, and will greatly damage the effect of the Mahalanobis distance discriminant method. We propose a modified Mahalanobis distance discriminant method, which adopts the general cross-validation (GCV) to choose the dimensions of these variables with the best prediction effect, so that the inverse of the covariance matrix can be well estimated when these attribute variables are highly correlated. The modified Mahalanobis distance discriminant method can provide a reliable estimation of the covariance matrix, resist the disturbances outside the sample set, improve the discriminant accuracy of the model, and enhance the generalization ability of the model. Simulations are conducted to verify the improvement of the discriminant performance of the modified Mahalanobis distance discriminant method compared with the classical one.

     

  • [1]
    上官丽英, 王惠文. 单形空间中多元成分数据的Fisher判别方法[J]. 北京航空航天大学学报, 2013, 39(10): 1376-1380. https://bhxb.buaa.edu.cn/CN/article/advancedSearchResult.do

    SHANGGUAN L Y, WANG H W. Fisher discriminant method for multiple compositional-data variables in simplex space[J]. Journal of Beijing University of Aeronautics and Astronautics, 2013, 39(10): 1376-1380(in Chinese). https://bhxb.buaa.edu.cn/CN/article/advancedSearchResult.do
    [2]
    CHI S P, MATTHEW Z H. A self-calibrated direct approach to precision matrix estimation and linear discriminant analysis in high dimensions[J]. Computational Statistics & Data Analysis, 2021, 155: 1-20.
    [3]
    黄雅楠, 魏立力. 基于相似度的三角模糊数Fisher线性判别分析[J]. 计算机工程, 2018, 44(8): 38-42.

    HUANG Y N, WEI L L. Similarity-based Fisher linear discriminant analysis for triangular fuzzy number[J]. Computer Enginnering, 2018, 44(8): 38-42(in Chinese).
    [4]
    王惠文, 陈梅玲, Gilbert Saporta. 基于Gram-Schmidt过程的判别变量筛选方法[J]. 北京航空航天大学学报, 2011, 37(8): 958-961. https://bhxb.buaa.edu.cn/CN/Y2011/V37/I8/958

    WANG H W, CHEN M L, SAPORTA G. Variable selection in discriminant analysis based on Gram-Schmidt process[J]. Journal of Beijing University of Aeronautics and Astronautics, 2011, 37(8): 958-961(in Chinese). https://bhxb.buaa.edu.cn/CN/Y2011/V37/I8/958
    [5]
    MAHALANOBIS P C. On the generalized distance in statistics[J]. Proceedings of the National Institute of Sciences of India, 1936, 2(1): 49-55.
    [6]
    史骏, 陈才扣. 基于马氏距离的半监督鉴别分析及人脸识别[J]. 北京航空航天大学学报, 2011, 37(12): 1589-1593. https://bhxb.buaa.edu.cn/CN/Y2011/V37/I12/1589

    SHI J, CHEN C K. Mahalanobis distance-based semi-supervised discriminant analysis for face recognition[J]. Journal of Beijing University of Aeronautics and Astronautics, 2011, 37(12): 1589-1593(in Chinese). https://bhxb.buaa.edu.cn/CN/Y2011/V37/I12/1589
    [7]
    DE MAESSCHALCK R, JOUAN-RIMBAUD D, MASSART D L. The Mahalanobis distance[J]. Chemometrics and Intelligent Laboratory Systems, 2000, 50(1): 1-18. doi: 10.1016/S0169-7439(99)00047-7
    [8]
    梅江元. 基于马氏距离的度量学习算法研究及应用[D]. 哈尔滨: 哈尔滨工业大学, 2016: 7-15.

    MEI J Y. Research on Mahalanobis distance based metric learning algorithm and its applications[D]. Harbin: Harbin Institute of Technology, 2016: 7-15(in Chinese).
    [9]
    CUDNEY E A F, RAGSDELL K M. Forecasting using the Mahalanobis-Taguchi system in the presence of collinearity[R]. [S. l. ]: SAE Technical Paper, 2006.
    [10]
    陶建波, 程龙生. 基于岭估计的岭马田系统在复共线性数据中的应用[J]. 数学的实践与认识, 2016, 46(4): 109-116.

    TAO J B, CHENG L S. The application of ridge Mahalanobis-Taguchi system based on ridge estimation in data with multicollinearity[J]. Mathematics in Practice and Theory, 2016, 46(4): 109-116(in Chinese).
    [11]
    丁坤, 刘振飞, 高列, 等. 基于主成分分析和马氏距离的光伏系统健康状态研究[J]. 可再生能源, 2017, 35(1): 1-7.

    DING K, LIU Z F, GAO L, et al. Research on photovoltaic system health state based on PCA-MD method[J]. Renewable Energy Resources, 2017, 35(1): 1-7(in Chinese).
    [12]
    谢吉伟, 刘君强, 王小磊. 基于马氏距离的航空发动机健康监控方法[J]. 航空计算技术, 2015, 45(3): 72-75. doi: 10.3969/j.issn.1671-654X.2015.03.018

    XIE J W, LIU J Q, WANG X L. Aero-engines health monitoring method based on Mahalanobis distance[J]. Aeronautical Computing Technique, 2015, 45(3): 72-75(in Chinese). doi: 10.3969/j.issn.1671-654X.2015.03.018
    [13]
    JOHNSON R A, WICHERN D W. Applied multivariate statistical analysis[M]. 6th ed. New York: Pearson, 2007: 445.
    [14]
    CHOI B Y, TAYLOR J, TIBSHIRANI R. Selecting the number of principal components: Estimation of the true rank of a noisy matrix[J]. The Annals of Statistics, 2017, 45(6): 2590-2617.
    [15]
    FORKMAN J, JOSSE J, PIEPHO H P. Hypothesis tests for principal component analysis when variables are standardized[J]. Journal of Agricultural, Biological and Environmental Statistics, 2019, 24: 289-308. doi: 10.1007/s13253-019-00355-5
    [16]
    VIRTA J, NORDHAUSEN K. Estimating the number of signals using principal component analysis[J]. Stat, 2019, 8(1): e231.
    [17]
    HASTIE T, TIBSHIRANI R, FRIEDMAN J. The elements of statistical learning[M]. 2nd ed. Berlin: Springer, 2009: 232-249.
    [18]
    JOSSE J, HUSSON F. Selecting the number of components in PCA using cross-validation approximations[J]. Computational Statistics & Data Analysis, 2012, 56: 1869-1879.
    [19]
    KIERS H A L. Weighted least squares fitting using ordinary least squares algorithms[J]. Psychometrica, 1997, 62(2): 251-266. doi: 10.1007/BF02295279
    [20]
    JOSSE J, PAGÈS J, HUSSON F. Gestion des données manquantes en analyse en composantes principales[J]. Journal de la Société Française de Statistiques, 2009, 150: 28-51.
  • Relative Articles

    [1]TANG X H,DOU Y R. Design and verification of airworthiness compliance of equivalent endurance test cycle of turbofan engine[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(1):133-140 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0953.
    [2]HUANG X G,WU Y F,LIU D Y. Position analysis of seven-link Barranov truss based on conformal geometric algebra[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(1):265-271 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0961.
    [3]CAI Y,SI Y H,WANG Y Z,et al. Analysis and control of influencing factors of cross coupling of flexible gyro[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(1):141-151 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0968.
    [4]XU J M,HUANG Z G,LI R. LEO satellite positioning method and simulation verification aided by airborne navigation equipment[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(10):3230-3238 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0759.
    [5]FU Honglan, ZHANG Hao. Close robust rendezvous on distant retrograde orbits[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2024.0560
    [6]CHENG Y,QIU B W,YU L,et al. Influence of maneuvering modes on flared landing performance of parafoil system[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(12):3940-3946 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0914.
    [7]ZHEN X D,WANG Z A,HU R C,et al. Aircraft flight qualities of short take-off and vertical landing[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(5):1576-1585 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0413.
    [8]NIU G C,WANG X N. A multi-task traffic scene detection model based on cross-attention[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(5):1491-1499 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0610.
    [9]YANG Z J,ZHANG C F,ZHAO R J,et al. Thermal deformation analysis and experimental verification of spatial deployable antenna hinge[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(1):243-249 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0219.
    [10]HUANG Mengdie, WANG Lufeng, HUANG Xuxing, LI Shuang. Space target collision risk analysis algorithm based on the square Mahalanobis distance[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2024.0167
    [11]ZHANG Y X,WANG X J,WANG S P,et al. Mechanism of butterfly forward flight and prototype verification based on characteristic motion observation[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(7):1651-1660 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0497.
    [12]HAN Xiao, ZHOU Ying, HUANG Hai, SHAO Jing-yi. Design and Verification of High-precision Dynamic Temperature Control System[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2023.0297
    [13]ZHANG P,CHI H H,LI J B,et al. Lattice based strong designated verifier signature scheme[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(6):1294-1300 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0445.
    [14]XIE C C,ZHANG D Y,AN C. Reduced order method for large flexible wing structure based on dynamic response data[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(6):1319-1330 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0439.
    [15]HAN X L,SHANGGUAN H,ZHANG X,et al. A low-dose CT image denoising method based on artifact estimation[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(2):491-502 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0263.
    [16]LIU M,AN J S. Research and design of SpaceWire multi-priority hierarchical scheduling crossbar[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(12):3386-3396 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0101.
    [17]XIAO R Y,YU J,MA Z X. Applicability of convolutional autoencoder in reduced-order model of unsteady compressible flows[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(12):3445-3455 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0085.
    [18]HU G,LI Z X,ZHANG F M,et al. Dimension reduction of multivariate time series based on two-dimensional inter-class marginal Fisher analysis[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(12):3537-3546 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0128.
    [19]GUO Tai, QIAN Xin, GONG Qi, REN Wenming, YANG Shuanbao, XU Qinggang. Methodology for model based verification requirements capturing and application in civil aircraft development[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(10): 1933-1942. doi: 10.13700/j.bh.1001-5965.2021.0047
    [20]WANG Shaoping, CHEN Rentong, ZHANG Chao. Reliability estimation for aircraft hydraulic pump based on bivariate performance degradation analysis[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(9): 1613-1623. doi: 10.13700/j.bh.1001-5965.2022.0297
  • Cited by

    Periodical cited type(6)

    1. 唐冬来,李擎宇,周强,龚奕宇,谢飞,周朋,康乐. 基于故障因子的用电采集设备状态评估方法. 供用电. 2024(09): 98-106 .
    2. 尧阳烽,余永华,王康,聂方,胡嘉,徐德峰. 基于多源信号融合的往复式压缩机气阀健康评估. 机电工程. 2024(11): 2003-2011 .
    3. 刘莉萍,冯清贤,余志斌. 基于改进的ISODATA的超球覆盖仿生模式分类算法. 计算机应用研究. 2023(03): 689-695 .
    4. 文静,俞卫琴. 基于马氏距离的半监督近邻传播聚类算法. 软件导刊. 2023(07): 59-65 .
    5. 狄谱旭,李旭鹏,张润,张博,原昱,张璐. 应用FTIR技术对尸体内外精液留存时间的研究. 中国法医学杂志. 2023(06): 677-682 .
    6. 孔进,曹从咏,吴至锦,王晨. 一种改进的轨道车辆牵引电机性能评价方法研究. 电机技术. 2022(05): 20-25 .

    Other cited types(5)

  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(2)  / Tables(3)

    Article Metrics

    Article views(755) PDF downloads(76) Cited by(11)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return