Citation: | HAN Yu, TIAN Baocheng, WANG Shupenget al. A combined estimation functions method for autoregressive model with time-varying variance[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(5): 756-761. doi: 10.13700/j.bh.1001-5965.2020.0657(in Chinese) |
With regard to the problem of parameter estimation, the combined estimation functions method is used to carry out statistical research on the parameter of autoregressive model with time-varying variance. The research status of the autoregressive model with time-varying variance and the combined estimation functions theory is reported. The combined estimation functions theory is used to obtain the parameter estimators of the autoregressive model with time-varying variance, and it is proved that the parameter estimators of the combined estimation functions method asymptotically converge to normal distribution. The numerical simulation is carried out for the comparative analysis of the proposed parameters. The simulation results show that, compared with the quasi maximum likelihood estimators and the least squares estimators, the proposed parameter estimators of combined estimation functions are slightly better than those of quasi maximum likelihood estimation, and the statistic is less affected by the distribution function of error terms.
[1] |
CAVALIERE G, TAYLOR A M R. Testing for unit roots in time series models with non-stationary volatility[J]. Journal of Econometrics, 2007, 140(2): 919-947. doi: 10.1016/j.jeconom.2006.07.019
|
[2] |
PHILLIPS P C B, XU K L. Inference in autoregression under heteroskedasticity[J]. Journal of Time, 2010, 27(2): 289-308.
|
[3] |
XU K L, PHILLIPS P C B. Adaptive estimation of autoregressive models with time-varying variances[J]. Journal of Econometrics, 2008, 142(1): 265-280. doi: 10.1016/j.jeconom.2007.06.001
|
[4] |
VALENTIN P, HAMDI R. Adaptive estimation of vector autoregressive models with time-varying variance: Application to testing linear causality in mean[J]. Journal of Statistical Planning and Inference, 2012, 142(11): 2891-2912. doi: 10.1016/j.jspi.2012.04.005
|
[5] |
GODAMBE V P. An optimum property of regular maximum likelihood estimation[J]. Annals of Mathematical Stats, 1960, 31(4): 1208-1211. doi: 10.1214/aoms/1177705693
|
[6] |
GODAMBE V P. The foundations of finite sample estimation in stochastic processes[J]. Biometrika, 1985, 72(2): 419-428. doi: 10.1093/biomet/72.2.419
|
[7] |
THAVANESWARAN A, HEYDE C C. Prediction via estimating functions[J]. Journal of Statistical Planning and Inference, 1999, 77(1): 89-101. doi: 10.1016/S0378-3758(98)00179-7
|
[8] |
NG K H, PEIRIS S, RICHARD G. Estimation and forecasting with logarithmic autoregressive conditional duration models: A comparative study with an application[J]. Expert Systems with Applications, 2014, 41(7): 3323-3332. doi: 10.1016/j.eswa.2013.11.024
|
[9] |
GHAHRAMANI M, THAVANESWARAN A. Combining estimating functions for volatility[J]. Journal of Statistical Planning and Inference, 2008, 139(4): 1449-1461.
|
[10] |
LIANG Y, THAVANESWARAN A, ABRAHAM B. Joint estimation using quadratic estimating function[J]. Journal of Probability and Statistics, 2011, 2011: 372512.
|
[11] |
THAVANESWARAN A, LIANG Y, FRANK J. Inference for random coefficient volatility models[J]. Statistics and Probability Letters, 2012, 82(12): 2086-2090. doi: 10.1016/j.spl.2012.07.008
|
[12] |
THAVANESWARAN A, RAVISHANKER N, LIANG Y. Generalized duration models and optimal estimation using estimating functions[J]. Annals of the Institute of Statistical Mathematics, 2015, 67(1): 129-156. doi: 10.1007/s10463-013-0442-9
|
[13] |
GHAHRAMANI M, THAVANESWARAN A. Nonlinear recursive estimation of volatility via estimating functions[J]. Journal of Statistical Planning and Inference, 2012, 142(1): 171-180. doi: 10.1016/j.jspi.2011.07.006
|
[14] |
ZHANG Y, ZOU J, RAVISHANKER N, et al. Modeling financial durations using penalized estimating functions[J]. Computational Statistics & Data Analysis, 2019, 131(C): 145-158.
|
[15] |
RAMANATHAN T, ANUJ M, BOVAS A. Estimation, filtering and smoothing in the stochastic conditional duration model: An estimating function approach[J]. Stat, 2016, 5(1): 11-21. doi: 10.1002/sta4.101
|
[1] | YIN W Z,LIAN D P,LI K Y,et al. Manipulator force/position hybrid control based on staged adaptation[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(1):161-166 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0955. |
[2] | SHI T X,CHEN L S,LI T S,et al. Distributed adaptive anti-disturbance control for power systems based on multi-agents[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(5):1685-1692 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0496. |
[3] | SUN X Y,SHEN Q,WU S F. Output regulation adaptive drag-free control with enhanced Kinky Inference[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(5):1604-1613 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0504. |
[4] | MA Z W,BAI H,CHEN H B,et al. RBF neural network robust adaptive control of quadrotor aircraft[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(5):1620-1628 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0595. |
[5] | FAN Zhi-wen, SONG Xiao-juan, LU: Shu-feng, YUE Bao-zeng. Fixed-time sliding mode fault-tolerant control for liquid-filled spacecraft[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2023.0736 |
[6] | LU Zheng-liang, XIE Hao-dong, NI Tao, XU Hao. Research on attitude compound control technology for Micro/Nanosatellite maneuvering segment[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2023.0688 |
[7] | ZHANG Y,YU H,YANG X X,et al. Adaptive group formation tracking-containment control for UAV swarm[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(1):97-109 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0264. |
[8] | SUN X M,MA X,LIU Y,et al. Adaptive sliding mode region reaching control for uncertain nonlinear systems[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(8):2482-2491 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0647. |
[9] | LIU S Y,YANG H L,ZHANG Z G,et al. Vibration control of flexible spacecraft with output constraints and external disturbances[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(5):1560-1567 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0622. |
[10] | CAI H,SHI P. Attitude control method for flexible spacecraft based on LPV model[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(12):3921-3929 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0880. |
[11] | JIN L,YANG S L. Fault-tolerant control of spacecraft attitude with prescribed performance based on reinforcement learning[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(8):2404-2412 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0666. |
[12] | LIU H,HUANG S,TU H Y. Quadrotor sliding mode control based on predefined time[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(5):1665-1674 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0481. |
[13] | LIU Y,ZHOU J P,ZHANG X T. Application and prospect of additive manufacturing technology in manned space engineering[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(1):83-91 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0455. |
[14] | TANG Z Y,MA F Y,PEI Z C. Improved PSO-RBF neural network adaptive sliding mode control for quadrotor systems[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(7):1563-1572 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0477. |
[15] | DENG B H,XU J F. Active disturbance rejection control of attitude of compound unmanned helicopter[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(11):3100-3107 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0788. |
[16] | YAN H B,XU W B,HUANG L E. Design of quadrotor attitude controller based on improved ADRC[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(12):3283-3292 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0129. |
[17] | LI C,HE Y Z,HU Y. Characteristic model control of nutation target contact detumbling[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(11):2977-2988 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0798. |
[18] | FU H Q,WU S F,LIU M L,et al. Disturbance-observer based adaptive control for space inertial sensor[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(10):2799-2806 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0734. |
[19] | WANG S Y,ZHANG J,YANG L Y. Attitude control law based on L1-ITD for a tail-sitter UAV[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(9):2501-2509 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0681. |
[20] | WANG T,JIAO H C,LIU J,et al. Design of attitude control method for ultra-low-orbit satellite with pneumatic steering gear[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(3):548-558 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0265. |