Citation: | HAN Yu, TIAN Baocheng, WANG Shupenget al. A combined estimation functions method for autoregressive model with time-varying variance[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(5): 756-761. doi: 10.13700/j.bh.1001-5965.2020.0657(in Chinese) |
With regard to the problem of parameter estimation, the combined estimation functions method is used to carry out statistical research on the parameter of autoregressive model with time-varying variance. The research status of the autoregressive model with time-varying variance and the combined estimation functions theory is reported. The combined estimation functions theory is used to obtain the parameter estimators of the autoregressive model with time-varying variance, and it is proved that the parameter estimators of the combined estimation functions method asymptotically converge to normal distribution. The numerical simulation is carried out for the comparative analysis of the proposed parameters. The simulation results show that, compared with the quasi maximum likelihood estimators and the least squares estimators, the proposed parameter estimators of combined estimation functions are slightly better than those of quasi maximum likelihood estimation, and the statistic is less affected by the distribution function of error terms.
[1] |
CAVALIERE G, TAYLOR A M R. Testing for unit roots in time series models with non-stationary volatility[J]. Journal of Econometrics, 2007, 140(2): 919-947. doi: 10.1016/j.jeconom.2006.07.019
|
[2] |
PHILLIPS P C B, XU K L. Inference in autoregression under heteroskedasticity[J]. Journal of Time, 2010, 27(2): 289-308.
|
[3] |
XU K L, PHILLIPS P C B. Adaptive estimation of autoregressive models with time-varying variances[J]. Journal of Econometrics, 2008, 142(1): 265-280. doi: 10.1016/j.jeconom.2007.06.001
|
[4] |
VALENTIN P, HAMDI R. Adaptive estimation of vector autoregressive models with time-varying variance: Application to testing linear causality in mean[J]. Journal of Statistical Planning and Inference, 2012, 142(11): 2891-2912. doi: 10.1016/j.jspi.2012.04.005
|
[5] |
GODAMBE V P. An optimum property of regular maximum likelihood estimation[J]. Annals of Mathematical Stats, 1960, 31(4): 1208-1211. doi: 10.1214/aoms/1177705693
|
[6] |
GODAMBE V P. The foundations of finite sample estimation in stochastic processes[J]. Biometrika, 1985, 72(2): 419-428. doi: 10.1093/biomet/72.2.419
|
[7] |
THAVANESWARAN A, HEYDE C C. Prediction via estimating functions[J]. Journal of Statistical Planning and Inference, 1999, 77(1): 89-101. doi: 10.1016/S0378-3758(98)00179-7
|
[8] |
NG K H, PEIRIS S, RICHARD G. Estimation and forecasting with logarithmic autoregressive conditional duration models: A comparative study with an application[J]. Expert Systems with Applications, 2014, 41(7): 3323-3332. doi: 10.1016/j.eswa.2013.11.024
|
[9] |
GHAHRAMANI M, THAVANESWARAN A. Combining estimating functions for volatility[J]. Journal of Statistical Planning and Inference, 2008, 139(4): 1449-1461.
|
[10] |
LIANG Y, THAVANESWARAN A, ABRAHAM B. Joint estimation using quadratic estimating function[J]. Journal of Probability and Statistics, 2011, 2011: 372512.
|
[11] |
THAVANESWARAN A, LIANG Y, FRANK J. Inference for random coefficient volatility models[J]. Statistics and Probability Letters, 2012, 82(12): 2086-2090. doi: 10.1016/j.spl.2012.07.008
|
[12] |
THAVANESWARAN A, RAVISHANKER N, LIANG Y. Generalized duration models and optimal estimation using estimating functions[J]. Annals of the Institute of Statistical Mathematics, 2015, 67(1): 129-156. doi: 10.1007/s10463-013-0442-9
|
[13] |
GHAHRAMANI M, THAVANESWARAN A. Nonlinear recursive estimation of volatility via estimating functions[J]. Journal of Statistical Planning and Inference, 2012, 142(1): 171-180. doi: 10.1016/j.jspi.2011.07.006
|
[14] |
ZHANG Y, ZOU J, RAVISHANKER N, et al. Modeling financial durations using penalized estimating functions[J]. Computational Statistics & Data Analysis, 2019, 131(C): 145-158.
|
[15] |
RAMANATHAN T, ANUJ M, BOVAS A. Estimation, filtering and smoothing in the stochastic conditional duration model: An estimating function approach[J]. Stat, 2016, 5(1): 11-21. doi: 10.1002/sta4.101
|
[1] | ZHAO X X,TAN H B,ZHAO H,et al. A consortium chain improvement model based on multi-chain collaboration[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(10):3283-3296 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0814. |
[2] | ZHAO Jianyin, JIANG Jingwei, SUN Yuan, WEI Shuntao. Storage reliability assessment based on multivariate degradation failure and sudden failure Competition[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2024.0601 |
[3] | LI Y,ZHANG X X,SUN F Q,et al. Belief reliability modeling for assembly accuracy of spaceborne SAR antenna deployable mechanism[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(1):134-143 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0234. |
[4] | MA X,XU S,SHANG P C,et al. Fault diagnosis of gearbox under open set and cross working condition based on transfer learning[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(5):1753-1760 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0719. |
[5] | WANG J H,TANG G D,CAO J,et al. Fault diagnosis method of BN ball mill rolling bearing based on AESL-GA[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(4):1138-1146 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0428. |
[6] | LI R Z,JIANG B,YU Z Q,et al. Data-driven fault detection and diagnosis for UAV swarms[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(5):1586-1592 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0441. |
[7] | JIAO M X,LEI C L,MA S Z,et al. Fault diagnosis method of small sample rolling bearings under variable working conditions based on MTF-SPCNN[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(12):3696-3708 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0927. |
[8] | CAO J,YIN H N,LEI X G,et al. Bearing fault diagnosis in variable working conditions based on domain adaptation[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(8):2382-2390 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0631. |
[9] | ZHANG Y G,GUO X X,XUE W Y,et al. Research on multi-scale thermal safety of lithium-ion power battery system[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(1):31-44 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0167. |
[10] | ZHU Qi-tao, LI Hong-shuang. A mixed reliability analysis method based on direct probability integral[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2023.0498 |
[11] | MA D,LIU Z H,GAO Q H,et al. Solenoid directional control valve fault pattern recognition based on multi-feature fusion[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(4):913-921 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0367. |
[12] | GAO H H,CHAO Q,XU Z,et al. Piston pump fault diagnosis based on Siamese neural network with small samples[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(1):155-164 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0213. |
[13] | NIE X H,JIN L. Application of kernel principal component analysis in autonomous fault diagnosis for spacecraft flywheel[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(8):2119-2128 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0582. |
[14] | ZHU P R,LIU Y Z,LIU Z C,et al. Fault diagnosis of synchronous generator rotating rectifier based on CEEMD and improved ELM[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(5):1166-1175 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0376. |
[15] | ZHAO J Y,HU J,YAO J Y,et al. EHA fault diagnosis and fault tolerant control based on adaptive neural network robust observer[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(5):1209-1221 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0416. |
[16] | WANG J H,GAO Y,CAO J,et al. Fault diagnosis of generator rolling bearing based on AE-BN[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(8):1896-1903 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0581. |
[17] | ZHANG Z,WANG P,ZHOU H Y. Reliability analysis of nozzle adjustment mechanism with interval distribution parameters[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(12):3377-3385 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0089. |
[18] | WANG J H,ZHOU D Y,CAO J,et al. Fault diagnosis of ball mill rolling bearing based on multi-feature fusion and RF[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(12):3253-3264 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0069. |
[19] | WANG Y D,SUN Y F,LEI D Y,et al. Thermal oxidation reliability and structure optimization of thin film thermocouple[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(4):943-948 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0318. |
[20] | LIU Jiufu, ZHANG Xinzhe, WANG Hengyu, TOMAS DIAS A.M., WANG Zhisheng, YANG Zhong. Partial observable Petri nets fault diagnosis with quantum Bayesian learning[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(7): 1125-1134. doi: 10.13700/j.bh.1001-5965.2021.0010 |