Citation: | HAN Yu, TIAN Baocheng, WANG Shupenget al. A combined estimation functions method for autoregressive model with time-varying variance[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(5): 756-761. doi: 10.13700/j.bh.1001-5965.2020.0657(in Chinese) |
With regard to the problem of parameter estimation, the combined estimation functions method is used to carry out statistical research on the parameter of autoregressive model with time-varying variance. The research status of the autoregressive model with time-varying variance and the combined estimation functions theory is reported. The combined estimation functions theory is used to obtain the parameter estimators of the autoregressive model with time-varying variance, and it is proved that the parameter estimators of the combined estimation functions method asymptotically converge to normal distribution. The numerical simulation is carried out for the comparative analysis of the proposed parameters. The simulation results show that, compared with the quasi maximum likelihood estimators and the least squares estimators, the proposed parameter estimators of combined estimation functions are slightly better than those of quasi maximum likelihood estimation, and the statistic is less affected by the distribution function of error terms.
[1] |
CAVALIERE G, TAYLOR A M R. Testing for unit roots in time series models with non-stationary volatility[J]. Journal of Econometrics, 2007, 140(2): 919-947. doi: 10.1016/j.jeconom.2006.07.019
|
[2] |
PHILLIPS P C B, XU K L. Inference in autoregression under heteroskedasticity[J]. Journal of Time, 2010, 27(2): 289-308.
|
[3] |
XU K L, PHILLIPS P C B. Adaptive estimation of autoregressive models with time-varying variances[J]. Journal of Econometrics, 2008, 142(1): 265-280. doi: 10.1016/j.jeconom.2007.06.001
|
[4] |
VALENTIN P, HAMDI R. Adaptive estimation of vector autoregressive models with time-varying variance: Application to testing linear causality in mean[J]. Journal of Statistical Planning and Inference, 2012, 142(11): 2891-2912. doi: 10.1016/j.jspi.2012.04.005
|
[5] |
GODAMBE V P. An optimum property of regular maximum likelihood estimation[J]. Annals of Mathematical Stats, 1960, 31(4): 1208-1211. doi: 10.1214/aoms/1177705693
|
[6] |
GODAMBE V P. The foundations of finite sample estimation in stochastic processes[J]. Biometrika, 1985, 72(2): 419-428. doi: 10.1093/biomet/72.2.419
|
[7] |
THAVANESWARAN A, HEYDE C C. Prediction via estimating functions[J]. Journal of Statistical Planning and Inference, 1999, 77(1): 89-101. doi: 10.1016/S0378-3758(98)00179-7
|
[8] |
NG K H, PEIRIS S, RICHARD G. Estimation and forecasting with logarithmic autoregressive conditional duration models: A comparative study with an application[J]. Expert Systems with Applications, 2014, 41(7): 3323-3332. doi: 10.1016/j.eswa.2013.11.024
|
[9] |
GHAHRAMANI M, THAVANESWARAN A. Combining estimating functions for volatility[J]. Journal of Statistical Planning and Inference, 2008, 139(4): 1449-1461.
|
[10] |
LIANG Y, THAVANESWARAN A, ABRAHAM B. Joint estimation using quadratic estimating function[J]. Journal of Probability and Statistics, 2011, 2011: 372512.
|
[11] |
THAVANESWARAN A, LIANG Y, FRANK J. Inference for random coefficient volatility models[J]. Statistics and Probability Letters, 2012, 82(12): 2086-2090. doi: 10.1016/j.spl.2012.07.008
|
[12] |
THAVANESWARAN A, RAVISHANKER N, LIANG Y. Generalized duration models and optimal estimation using estimating functions[J]. Annals of the Institute of Statistical Mathematics, 2015, 67(1): 129-156. doi: 10.1007/s10463-013-0442-9
|
[13] |
GHAHRAMANI M, THAVANESWARAN A. Nonlinear recursive estimation of volatility via estimating functions[J]. Journal of Statistical Planning and Inference, 2012, 142(1): 171-180. doi: 10.1016/j.jspi.2011.07.006
|
[14] |
ZHANG Y, ZOU J, RAVISHANKER N, et al. Modeling financial durations using penalized estimating functions[J]. Computational Statistics & Data Analysis, 2019, 131(C): 145-158.
|
[15] |
RAMANATHAN T, ANUJ M, BOVAS A. Estimation, filtering and smoothing in the stochastic conditional duration model: An estimating function approach[J]. Stat, 2016, 5(1): 11-21. doi: 10.1002/sta4.101
|