Volume 48 Issue 5
May  2022
Turn off MathJax
Article Contents
ZHOU Rui, GAO Weicheng, LIU Weiet al. Effects of web cutout on bearing performance of composite beam webs under shear load[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(5): 831-840. doi: 10.13700/j.bh.1001-5965.2020.0659(in Chinese)
Citation: ZHOU Rui, GAO Weicheng, LIU Weiet al. Effects of web cutout on bearing performance of composite beam webs under shear load[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(5): 831-840. doi: 10.13700/j.bh.1001-5965.2020.0659(in Chinese)

Effects of web cutout on bearing performance of composite beam webs under shear load

doi: 10.13700/j.bh.1001-5965.2020.0659
Funds:

National Natural Science Foundation of China 11772110

More Information
  • Corresponding author: GAO Weicheng, E-mail: gaoweicheng@sina.com
  • Received Date: 26 Nov 2020
  • Accepted Date: 19 Mar 2021
  • Publish Date: 20 May 2022
  • The buckling unstability and post-buckling bearing capacity of plain woven composite beam webs under shear load were investigated through experiments and finite element method in this paper. Based on characteristics of the experimental strain results and numerical buckling mode of the finite element analysis, the buckling characteristics of the composite beam webs were analyzed. Hashin failure criteria for plain woven composite materials were imported in the post-buckling bearing analysis, and the main failure modes of the webs from the numerical results are fiber tensile failure in the warp direction and fiber compressive failure in the weft direction. The simulated failure behavior of the webs agrees well with the experimental results. A parametric study based on the experimentally validated finite element model was conducted to investigate the effects of web cutout size and form on the stability, bearing capacity and failure mode of plain woven composite beam web under shear load. The research results provide reference for the design and strength analysis of composite structures.

     

  • loading
  • [1]
    杜善义, 关志东. 我国大型客机先进复合材料技术应对策略思考[J]. 复合材料学报, 2008, 25(1): 1-10. doi: 10.3321/j.issn:1000-3851.2008.01.001

    DU S Y, GUAN Z D. Strategic considerations for development of advanced composite technology for large commercial aircraft in China[J]. Acta Materiae Compositae Sinaca, 2008, 25(1): 1-10(in Chinese). doi: 10.3321/j.issn:1000-3851.2008.01.001
    [2]
    STEVENS K, RICCI R, DAVIES G. Buckling and post-buckling of composite structures[J]. Composites, 1995, 26(3): 189-199. doi: 10.1016/0010-4361(95)91382-F
    [3]
    PEDRO B D, DINAR C. Post-buckling behavior and strength of cold-formed steel lipped channel columns experiencing distortional/global interaction[J]. Computers and Structures, 2011, 89(3-4): 422-434. doi: 10.1016/j.compstruc.2010.11.015
    [4]
    ZIMMERMANN R, KLEIN H, KLING A. Buckling and post-buckling of stiffener-stiffened fiber composite curved panels-test and computations[J]. Composite Structures, 2006, 13(2): 150-161.
    [5]
    BAILEY R, WOOD J. Stability characteristics of composite panels with various cutout geometries[J]. Composite Structures, 1996, 35(1): 21-31. doi: 10.1016/0263-8223(96)00021-9
    [6]
    REZAEEPAZHAND J, JAFARI M. Stress analysis of perforated composite plates[J]. Composite Structures, 2005, 71(3-4): 463-468. doi: 10.1016/j.compstruct.2005.09.017
    [7]
    KUMAR D, SINGH S B. Stability and failure of composite laminates with various shaped cutouts under combined in-plane loads[J]. Composites Part B-Engineering, 2012, 43(2): 142-149. doi: 10.1016/j.compositesb.2011.09.005
    [8]
    KUMAR D, SINGH S B. Effects of flexural boundary conditions on failure and stability of composite laminate with cutouts under combined in-plane loads[J]. Composites Part B-Engineering, 2013, 45(1): 657-665. doi: 10.1016/j.compositesb.2012.08.016
    [9]
    LI X, GAO W, LIU W. The bearing behavior and failure characteristic of CFRP laminate with cutout under shearing load: Part 1, Experiments[J]. Composite Structures, 2016, 141: 355-365. doi: 10.1016/j.compstruct.2015.12.069
    [10]
    张健, 刘伟, 高维成. 开孔补强对受剪复合材料工字型梁腹板稳定性的影响研究[J]. 船舶力学, 2018, 22(10): 1241-1248. doi: 10.3969/j.issn.1007-7294.2018.10.008

    ZHANG J, LIU W, GAO W C. Effect of cutout and edge reinforcement on buckling and post-buckling responses of composite Ⅰ-section beams under shear load[J]. Journal of Ship Mechanics, 2018, 22(10): 1241-1248(in Chinese). doi: 10.3969/j.issn.1007-7294.2018.10.008
    [11]
    ZHANG J, LIU W, GAO W C. Failure behavior and strength of composite Ⅰ-section beam with double cutouts and stiffener reinforcement[J]. Applied Composite Materials, 2018, 25: 1385-1400. doi: 10.1007/s10443-018-9672-6
    [12]
    张修路, 杜芳静, 王锡芝. 剪切载荷作用下复合材料机翼梁腹板开口分析[J]. 沈阳航空航天大学学报, 2018, 35(6): 50-56. doi: 10.3969/j.issn.2095-1248.2018.06.007

    ZHANG X L, DU F J, WANG X Z. Analysis on openings of composite laminated aircraft wing beam web under shear load[J]. Journal of Shenyang Aerospace University, 2018, 35(6): 50-56(in Chinese). doi: 10.3969/j.issn.2095-1248.2018.06.007
    [13]
    张讯, 葛建彪. 基于NASTRAN的复合材料后梁稳定性优化设计与开口补强分析[J]. 民用飞机设计与研究, 2019, 1: 11-17. https://www.cnki.com.cn/Article/CJFDTOTAL-MYFJ201901009.htm

    ZHANG X, GE J B. Optimal design and opening strengthen analysis of composite rear spar stability based on Nastran[J]. Civil Aircraft Design & Research, 2019, 1: 11-17(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-MYFJ201901009.htm
    [14]
    ASADI A, SHEIKH A H, THOMSEN O T. Buckling behavior of thin-walled laminated composite beams having open and closed sections subjected to axial and end moment loading[J]. Thin-Walled Structures, 2019, 141: 85-96. doi: 10.1016/j.tws.2019.04.005
    [15]
    赵娜, 张博平, 刘向东. 复合材料开孔加筋壁板剪切试验与数值分析[J]. 科学技术与工程, 2012, 12(13): 3155-3159. doi: 10.3969/j.issn.1671-1815.2012.13.027

    ZHAO N, ZHANG B P, LIU X D. Shear experimental and numerical analysis of composite ribbed panel with open hole structure[J]. Science Technology and Engineering, 2012, 12(13): 3155-3159(in Chinese). doi: 10.3969/j.issn.1671-1815.2012.13.027
    [16]
    刘婷. 复合材料层合板的开口补强研究进展[J]. 航空工程进展, 2013, 4(1): 10-16. doi: 10.3969/j.issn.1674-8190.2013.01.002

    LIU T. Cutout reinforcement research progress of composite laminates[J]. Advances in Aeronautical Science and Engineering, 2013, 4(1): 10-16(in Chinese). doi: 10.3969/j.issn.1674-8190.2013.01.002
    [17]
    邹健, 程小全, 邵世纲, 等. 基于ANSYS环境的平面编织层合板拉伸破坏数值仿真[J]. 复合材料学报, 2007, 24(6): 180-184. doi: 10.3321/j.issn:1000-3851.2007.06.030

    ZOU J, CHENG X Q, SHAO S G, et al. Numerical simulation for plain woven composite laminate based on ANSYS software[J]. Acta Materiae Compositae Sinaca, 2007, 24(6): 180-184(in Chinese). doi: 10.3321/j.issn:1000-3851.2007.06.030
    [18]
    胡博海, 李亚智, 樊振兴, 等. 复合材料梁腹板在弯剪复合载荷作用下的屈曲和后屈曲研究[J]. 机械强度, 2014, 36(6): 916-921. https://www.cnki.com.cn/Article/CJFDTOTAL-JXQD201406016.htm

    HU B H, LI Y Z, FAN Z X, et al. Buckling and post-buckling of a composite web beam under shearing bending[J]. Journal of Mechanical Strength, 2014, 36(6): 916-921(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JXQD201406016.htm
    [19]
    REDDY Y S, REDDY J N. Three-dimensional finite element progressive failure analysis of composite laminates under axial extension[J]. Composites Technology and Research, 1993, 15(2): 73-87. doi: 10.1520/CTR10358J
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(16)  / Tables(4)

    Article Metrics

    Article views(439) PDF downloads(27) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return