Volume 48 Issue 5
May  2022
Turn off MathJax
Article Contents
ZHANG Caiping, LI Feng, ZHANG Linjing, et al. Optimized charging method of lithium-ion batteries based on dynamic characteristics of electrodes[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(5): 725-735. doi: 10.13700/j.bh.1001-5965.2020.0660(in Chinese)
Citation: ZHANG Caiping, LI Feng, ZHANG Linjing, et al. Optimized charging method of lithium-ion batteries based on dynamic characteristics of electrodes[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(5): 725-735. doi: 10.13700/j.bh.1001-5965.2020.0660(in Chinese)

Optimized charging method of lithium-ion batteries based on dynamic characteristics of electrodes

doi: 10.13700/j.bh.1001-5965.2020.0660
Funds:

National Natural Science Foundation of China 52007006

National Natural Science Foundation of China 51977007

National Natural Science Foundation of China 61633015

More Information
  • Corresponding author: ZHANG Linjing, E-mail: lj.zhang@bjtu.edu.cn
  • Received Date: 26 Nov 2020
  • Accepted Date: 09 Dec 2020
  • Publish Date: 20 May 2022
  • Aiming at the problems existing in the fast charging of electric vehicles, the charging and discharging characteristics of lithium-ion batteries are well studied. And an optimized charging protocol are proposed. The maximum allowable charging current rates of positive and negative electrodes have been determined under different state of charge (SOC) with the boundary condition of none lithium-metal deposition in negative electrode. The charging energy consumption and charging time model is established for the full cell charging process. And the optimal charging current pattern is obtained for the full cell by employing the particle swarm optimization method and constraining the maximum allowable charging current of each electrode. The results demonstrate that the battery can be charged from 0% to 80% SOC within 34 minutes using the optimal charging current pattern, and the charging time can be reduced by about 26.5% when compared to that of 1 C constant-current charging. Meanwhile, the energy consumption of battery can be reduced by about 1.5% with the optimized charging current pattern, when compared to the constant-current charging pattern using its average value.

     

  • loading
  • [1]
    TOMASZEWSKA A, CHU Z Y, FENG X, et al. Lithium-ion battery fast charging: A review[J]. eTransportation, 2019, 1: 100011. doi: 10.1016/j.etran.2019.100011
    [2]
    LIN X, PEREZH E, MOHAN S, et al. A lumped-parameter electro-thermal model for cylindrical batteries[J]. Journal of Power Sources, 2014, 257: 1-11. doi: 10.1016/j.jpowsour.2014.01.097
    [3]
    YOUREY W, FU Y, LI N, et al. Determining accelerated charging procedure from half cell characterization[J]. Journal of the Electrochemical Society, 2019, 166(8): A1432-A1438. doi: 10.1149/2.0591908jes
    [4]
    AMANOR-BOADU J M, GUISEPPI-ELIE A, SANCHEZ-SINENCIO E. The impact of pulse charging parameters on the life cycle of lithium-ion polymerbatteries[J]. Energies, 2018, 11(8): 2162. doi: 10.3390/en11082162
    [5]
    SONG M, CHOE S Y. Fast and safe charging method suppressing side reaction and lithium deposition reaction in lithium ion battery[J]. Journal of Power Sources, 2019, 436: 226835. doi: 10.1016/j.jpowsour.2019.226835
    [6]
    YANG X, WANG C. Understanding the trilemma of fast charging, energy density and cycle life of lithium-ion batteries[J]. Journal of Power Sources, 2018, 402: 489-498. doi: 10.1016/j.jpowsour.2018.09.069
    [7]
    WALDMANN T, HOGG B I, WOHLFAHRT-MEHRENS M. Li plating as unwanted side reaction in commercial Li-ion cells-A review[J]. Journal of Power Sources, 2018, 384: 107-124. doi: 10.1016/j.jpowsour.2018.02.063
    [8]
    CHU Z, FENG Y, OUYANG M, et al. Optimal charge current of lithium ion battery[J]. Energy Procedia, 2017, 142: 1867-1873. doi: 10.1016/j.egypro.2017.12.577
    [9]
    XU M, WANG R, ZHAO P, et al. Fast charging optimization for lithium-ion batteries based on dynamic programming algorithm and electrochemical-thermal-capacity fade coupled model[J]. Journal of Power Sources, 2019, 438: 227015. doi: 10.1016/j.jpowsour.2019.227015
    [10]
    HUSSEIN A A H, BATARSEH I. A review of charging algorithms for nickel and lithium battery chargers[J]. IEEE Transactions on Vehicular Technology, 2011, 60(3): 830-838. doi: 10.1109/TVT.2011.2106527
    [11]
    LU B, ZHAO Y, SONG Y, et al. Stress-limited fast charging methods with time-varying current in lithium-ion batteries[J]. Electrochimica Acta, 2018, 288: 144-152. doi: 10.1016/j.electacta.2018.09.009
    [12]
    NOTTEN P H L, OP HET VELD J H G, VAN BEEK J R G. Boostcharging Li-ion batteries: A challenging new charging concept[J]. Journal of Power Sources, 2005, 145(1): 89-94. doi: 10.1016/j.jpowsour.2004.12.038
    [13]
    ZHANG S S, XU K, JOW T R. Study of the charging process of a LiCoO2-based Li-ion battery[J]. Journal of Power Sources, 2006, 160(2): 1349-1354. doi: 10.1016/j.jpowsour.2006.02.087
    [14]
    CHEN L. A design of an optimal battery pulse charge system by frequency-varied technique[J]. IEEE Transactions on Industrial Electronics, 2007, 54(1): 398-405. doi: 10.1109/TIE.2006.888796
    [15]
    DE JONGH P E, NOTTEN P H L. Effect of current pulses on lithium intercalation batteries[J]. Solid State Ionics, 2002, 148(3-4): 259-268. doi: 10.1016/S0167-2738(02)00062-0
    [16]
    LI J, MURPHY E, WINNICK J, et al. The effects of pulse charging on cycling characteristics of commercial lithium-ion batteries[J]. Journal of Power Sources, 2001, 102(1-2): 302-309. doi: 10.1016/S0378-7753(01)00820-5
    [17]
    LIN X, HAO X, LIU Z, et al. Health conscious fast charging of Li-ion batteries via a single particle model with aging mechanisms[J]. Journal of Power Sources, 2018, 400: 305-316. doi: 10.1016/j.jpowsour.2018.08.030
    [18]
    LEE C H, CHANG T W, HSU S H, et al. Taguchi-based PSO for searching an optimal four-stage charge pattern of Li-ion batteries[J]. Journal of Energy Storage, 2019, 21: 301-309. doi: 10.1016/j.est.2018.11.031
    [19]
    LI Y, LI K, XIE Y, et al. Optimized charging of lithium-ion battery for electric vehicles: Adaptive multistage constant currente-constant voltage charging strategy[J]. Renewable Energy, 2020, 146: 2688-2699. doi: 10.1016/j.renene.2019.08.077
    [20]
    LIU K, ZOU C, LI K, et al. Charging pattern optimization for lithium-ion batteries with an electrothermal-aging model[J]. IEEE Transactions on Industrial Electronics, 2018, 14(12): 5463-5474. doi: 10.1109/TII.2018.2866493
    [21]
    SURESH R, RENGASWAMY R. Modeling and control of battery systems. Part Ⅱ: A model predictive controller for optimal charging[J]. Computers and Chemical Engineering, 2018, 119: 326-335. doi: 10.1016/j.compchemeng.2018.08.017
    [22]
    LIU K, HU X, YANG Z, et al. Lithium-ion battery charging management considering economic costs of electrical energy loss and battery degradation[J]. Energy Conversion and Management, 2019, 195: 167-179. doi: 10.1016/j.enconman.2019.04.065
    [23]
    LEE C H, CHEN M Y, HSU S H, et al. Implementation of an SOC-based four-stage constant current charger for Li-ion batteries[J]. Journal of Energy Storage, 2018, 18: 528-537. doi: 10.1016/j.est.2018.06.010
    [24]
    LIU Y H, HSIEH C H, LUO Y F. Search for an optimal five-step charging pattern for Li-ion batteries using consecutive orthogonal arrays[J]. IEEE Transactions on Energy Conversion, 2011, 26(2): 654-661. doi: 10.1109/TEC.2010.2103077
    [25]
    SVOBODA V, DOERING H, GARCHE J. The influence of fast charging on the performance of VRLA batteries[J]. Journal of Power Sources, 2005, 144(1): 244-254. doi: 10.1016/j.jpowsour.2004.12.026
    [26]
    ZHANG C, JIANG J, GAO Y, et al. Charging optimization in lithium-ion batteries based on temperature rise and charge time[J]. Applied Energy, 2017, 194: 569-577. doi: 10.1016/j.apenergy.2016.10.059
    [27]
    ZHANG S, ZHANG C, XIONG R, et al. Study on the optimal charging strategy for lithium-ion batteries used in electric vehicles[J]. Energies, 2014, 7(10): 6783-6797. doi: 10.3390/en7106783
    [28]
    GUO Z, LIAW B Y, QIU X, et al. Optimal charging method for lithium ion batteries using a universal voltage protocol accommodating aging[J]. Journal of Power Sources, 2015, 274: 957-964. doi: 10.1016/j.jpowsour.2014.10.185
    [29]
    SPINGLER F B, WITTMANN W, STURM J, et al. Optimum fast charging of lithium-ion pouch cells based on local volume expansion criteria[J]. Journal of Power Sources, 2018, 393: 152-160. doi: 10.1016/j.jpowsour.2018.04.095
    [30]
    SABET P S, STAHL G, SAUER D U. Non-invasive investigation of predominant processes in the impedance spectra of high energy lithium-ion batteries with Nickel-Cobalt-Aluminum cathodes[J]. Journal of Power Sources, 2018, 406: 185-193. doi: 10.1016/j.jpowsour.2018.10.024
    [31]
    LI Z, HUANG J, LIAN B Y, et al. A review of lithium deposition in lithium-ion and lithium metal secondary batteries[J]. Journal of Power Sources, 2014, 254: 168-182. doi: 10.1016/j.jpowsour.2013.12.099
    [32]
    UHLMANN C, ILLIG J, ENDER M, et al. In situ detection of lithium metal plating on graphite in experimental cells[J]. Journal of Power Sources, 2015, 279: 428-438. doi: 10.1016/j.jpowsour.2015.01.046
    [33]
    JIA X, ZHANG C, WANG L, et al. The degradation characteristics and mechanism of Li[Ni0.5Co0.2Mn0.3]O2 batteries at different temperatures and discharge current rates[J]. Journal of the Electrochemical Society, 2020, 167(2): 20503. doi: 10.1149/1945-7111/ab61e9
    [34]
    GAO Y, YANG S, JIANG J, et al. The mechanism and characterization of accelerated capacity deterioration for lithium-ion battery with Li(NiMnCo)O2 cathode[J]. Journal of the Electrochemical Society, 2019, 166(8): A1623-A1635. doi: 10.1149/2.1001908jes
    [35]
    HARIHARAN K S, KUMAR V S. A nonlinear equivalent circuit model for lithium ion cells[J]. Journal of Power Sources, 2013, 222: 210-217. doi: 10.1016/j.jpowsour.2012.08.090
    [36]
    JIANG J, LIU Q, ZHANG C, et al. Evaluation of acceptable charging current of power Li-ion batteries based on polarization characteristics[J]. IEEE Transactions on Industrial Electronics, 2014, 61(12): 6844-6851. doi: 10.1109/TIE.2014.2320219
    [37]
    PATNAIK L, PRANEETH A V J S, WILLIAMSON S. A closed-loop constant-temperature constant-voltage charging technique to reduce charge time of lithium-ion batteries[J]. IEEE Transactions on Industrial Electronics, 2019, 66(2): 1059-1067. doi: 10.1109/TIE.2018.2833038
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(11)  / Tables(2)

    Article Metrics

    Article views(620) PDF downloads(101) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return