Volume 48 Issue 5
May  2022
Turn off MathJax
Article Contents
MIAO Keqiang, WANG Xi, ZHU Meiyinet al. Optimal design of transient main closed-loop control law based on LMI[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(5): 841-854. doi: 10.13700/j.bh.1001-5965.2020.0661(in Chinese)
Citation: MIAO Keqiang, WANG Xi, ZHU Meiyinet al. Optimal design of transient main closed-loop control law based on LMI[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(5): 841-854. doi: 10.13700/j.bh.1001-5965.2020.0661(in Chinese)

Optimal design of transient main closed-loop control law based on LMI

doi: 10.13700/j.bh.1001-5965.2020.0661
Funds:

National Science and Technology Major Project 2017-V-0015-0067

More Information
  • Corresponding author: WANG Xi, E-mail: xwang@buaa.edu.cn
  • Received Date: 26 Nov 2020
  • Accepted Date: 16 Apr 2021
  • Publish Date: 20 May 2022
  • In order to solve the problem that it is difficult to design transient multivariable control law for turbofan engines, a method of extracting linear model at quasi steady working point of transient acceleration and deceleration line based on power import and extraction is proposed. Based on this, a transient main closed-loop control optimal design method is proposed. It is extended from the steady multivariable control law's linear matrix inequality (LMI) design method to the design of transient main closed-loop control for turbofan engines because the gain-schedule can be used as nonlinear dynamic control method. Minimum matrix trace optimization closed-loop pole is configured to ensure the feasibility of the method. As demanded by two different transient main closed-loop control schedules, two different minimum matrix trace optimization transient multivariable main closed-loop control laws were designed respectively. Dual channels transient performance ground simulations based on a nonlinear turbofan engine model and containing the dynamic state between idle state and maximum power setting state were done. The results show that settling time of transient control dual channels N1 and N2 is no more than 5.0 s and the maximum overshoot is 0.8% in case one. In case two, settling time of transient control dual channels πT and N2 is no more than 5.6 s and the maximum overshoot is 0.8%.

     

  • loading
  • [1]
    赵连春, 杰克·马丁利. 飞机发动机控制: 设计、系统分析和健康监视[M]. 张新国, 等译. 北京: 航空工业出版社, 2012: 114-124.

    JAW L C, MATTINGLY J D. Aircraft engine controls: Design, system analysis, and health monitoring[M]. ZHANG X G, et al, translated. Beijing: Aviation Industry Press, 2012: 114-124(in Chinese).
    [2]
    SPANG H A, BROWN H. Control of jet engines[J]. Control Engineering Practice, 1999, 7(9): 1043-1059. doi: 10.1016/S0967-0661(99)00078-7
    [3]
    GARG S. Propulsion controls and diagnostics research in support of NASA aeronautics and exploration mission programs: AIAA 2010-6747[R]. Reston: AIAA, 2010.
    [4]
    CSANK J, MAY D R, LITT S J, et al. Control design for a generic commercial aircraft engine: AIAA 2010-6629[R]. Reston: AIAA, 2010.
    [5]
    苗浩洁, 王曦, 杨舒柏. 基于相似参数的加速供油规律反设计方法研究[J]. 推进技术, 2019, 40(3): 675-681. https://www.cnki.com.cn/Article/CJFDTOTAL-TJJS201903024.htm

    MIAO H J, WANG X, YANG S B. Reverse design method of fuel supply law for acceleration based on similarity parameters[J]. Journal of Propulsion Technology, 2019, 40(3): 675-681(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-TJJS201903024.htm
    [6]
    YANG S B, WANG X. A comparative study on N-dot acceleration technique[C]//ASME Turbo Expo 2016: Turbomachinery Technical Conference and Exposition. New York: ASME, 2016: 1-9.
    [7]
    西格德·斯科格斯特德, 伊恩·波斯尔思韦特. 多变量反馈控制分析与设计[M]. 韩崇昭, 张爱民, 刘晓风, 等译. 西安: 西安交通大学出版社, 2011: 57-99.

    SKOGESTAD S, POSTLETHWAITE I. Multivariable feedback control: Analysis and design[M]. HAN C Z, ZHANG A M, LIU X F, et al, translated. Xi'an: Xi'an Jiaotong University Press, 2011: 57-99(in Chinese).
    [8]
    RICHTER H. A multi-regulator sliding mode control strategy for output-constrained systems[J]. Automatica, 2011, 47(10): 2251-2259. doi: 10.1016/j.automatica.2011.08.003
    [9]
    理查特. 涡扇发动机先进控制[M]. 覃道亮, 王曦, 译. 北京: 国防工业出版社, 2013: 42-75.

    RICHTER H. Advanced control of turbofan engines[M]. QIN D L, WANG X, translated. Beijing: National Defense Industry Press, 2013: 42-75(in Chinese).
    [10]
    BOYD S P, CHAOUI E L. Method of centers for minimizing generalized eigenvalues[J]. Linear Algebra and its Applications, 1993, 188-189: 63-111. doi: 10.1016/0024-3795(93)90465-Z
    [11]
    GAHINET P. Explicit controller formulas for LMI-based H synthesis[J]. Automatica, 1996, 32(7): 1007-1014. doi: 10.1016/0005-1098(96)00033-7
    [12]
    BOYD S P, GHAOUI E L, FERON E, et al. Linear matrix inequalities in systems and control theory[M]. Philadelphia: SIAM, 1994: 7-27.
    [13]
    高金凤, 俞立, 王春平. 线性矩阵不等式及其在控制工程中的应用[J]. 控制工程, 2003, 10(2): 145-148. doi: 10.3969/j.issn.1671-7848.2003.02.015

    GAO J F, YU L, WANG C P. Linear matrix inequality and its application in control engineering[J]. Control Engineering, 2003, 10(2): 145-148(in Chinese). doi: 10.3969/j.issn.1671-7848.2003.02.015
    [14]
    崔颖, 王曦. 涡扇发动机极点配置圆的多变量PI控制设计[J]. 航空发动机, 2019, 45(3): 31-38. https://www.cnki.com.cn/Article/CJFDTOTAL-HKFJ201903006.htm

    CUI Y, WANG X. Multivariable PI control design for pole placing circle of turbofan engine[J]. Aeroengine, 2019, 45(3): 31-38(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HKFJ201903006.htm
    [15]
    胡东, 陈文华, 周川. 基于LMI的一类LPV系统的自调整输出反馈极点配置[J]. 南京航空航天大学学报, 1998, 30(4): 388-393. https://www.cnki.com.cn/Article/CJFDTOTAL-NJHK804.005.htm

    HU D, CHEN W H, ZHOU C. Self-tuning output feedback pole placement for a class of LPV systems based on LMI[J]. Journal of Nanjing University of Aeronautics and Astronautics, 1998, 30(4): 388-393(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-NJHK804.005.htm
    [16]
    FENG Z, WANG Q G, LEE T H. On the design of multivariable PID controllers via LMI approach[J]. Automatica, 2002, 38(3): 517-526. doi: 10.1016/S0005-1098(01)00237-0
    [17]
    SCHERER C, GAHINET P, CHILALI M. Multiobjective output-feedback control via LMI optimization[J]. IEEE Transactions on Atuomatic Control, 1997, 42(7): 896-910. doi: 10.1109/9.599969
    [18]
    KANEV S, SCHERER C, VERHAEGEN M, et al. Robust output-feedback controller design via local BMI optimization[J]. Automatica, 2004, 40(7): 1115-1127. doi: 10.1016/j.automatica.2004.01.028
    [19]
    WOLODKIN G, BAOAS G J, GARRARD W. Application of parameter-dependent robust control synthesis to turbofan engines[J]. Journal of Guidance, Control, and Dynamics, 1999, 22(6): 833-838. doi: 10.2514/2.4460
    [20]
    PARSONS D A. N-dot schedules dynamic compensation system for gas turbines-inputs sum of speed and rate of change of speed of gas generator to schedule to output desired acceleration as function of generator speed: US, 5029441[P]. 1991-07-09.
    [21]
    蔡常鹏, 郑前钢, 颜秋英, 等. 军用小涵道比涡扇发动机最大状态控制计划鲁棒性分析[J]. 推进技术, 2022, 43(5): 1-8. https://www.cnki.com.cn/Article/CJFDTOTAL-TJJS202205030.htm

    CAI C P, ZHENG Q G, YAN Q Y, et al. Robustness analysis of maximum state control plan for military small bypass ratio turbofan engine[J]. Journal of Porpulsion Technology, 2022, 43(5): 1-8(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-TJJS202205030.htm
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(24)  / Tables(11)

    Article Metrics

    Article views(348) PDF downloads(32) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return