Citation: | MIAO Keqiang, WANG Xi, ZHU Meiyinet al. Optimal design of transient main closed-loop control law based on LMI[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(5): 841-854. doi: 10.13700/j.bh.1001-5965.2020.0661(in Chinese) |
In order to solve the problem that it is difficult to design transient multivariable control law for turbofan engines, a method of extracting linear model at quasi steady working point of transient acceleration and deceleration line based on power import and extraction is proposed. Based on this, a transient main closed-loop control optimal design method is proposed. It is extended from the steady multivariable control law's linear matrix inequality (LMI) design method to the design of transient main closed-loop control for turbofan engines because the gain-schedule can be used as nonlinear dynamic control method. Minimum matrix trace optimization closed-loop pole is configured to ensure the feasibility of the method. As demanded by two different transient main closed-loop control schedules, two different minimum matrix trace optimization transient multivariable main closed-loop control laws were designed respectively. Dual channels transient performance ground simulations based on a nonlinear turbofan engine model and containing the dynamic state between idle state and maximum power setting state were done. The results show that settling time of transient control dual channels
[1] |
赵连春, 杰克·马丁利. 飞机发动机控制: 设计、系统分析和健康监视[M]. 张新国, 等译. 北京: 航空工业出版社, 2012: 114-124.
JAW L C, MATTINGLY J D. Aircraft engine controls: Design, system analysis, and health monitoring[M]. ZHANG X G, et al, translated. Beijing: Aviation Industry Press, 2012: 114-124(in Chinese).
|
[2] |
SPANG H A, BROWN H. Control of jet engines[J]. Control Engineering Practice, 1999, 7(9): 1043-1059. doi: 10.1016/S0967-0661(99)00078-7
|
[3] |
GARG S. Propulsion controls and diagnostics research in support of NASA aeronautics and exploration mission programs: AIAA 2010-6747[R]. Reston: AIAA, 2010.
|
[4] |
CSANK J, MAY D R, LITT S J, et al. Control design for a generic commercial aircraft engine: AIAA 2010-6629[R]. Reston: AIAA, 2010.
|
[5] |
苗浩洁, 王曦, 杨舒柏. 基于相似参数的加速供油规律反设计方法研究[J]. 推进技术, 2019, 40(3): 675-681.
MIAO H J, WANG X, YANG S B. Reverse design method of fuel supply law for acceleration based on similarity parameters[J]. Journal of Propulsion Technology, 2019, 40(3): 675-681(in Chinese).
|
[6] |
YANG S B, WANG X. A comparative study on N-dot acceleration technique[C]//ASME Turbo Expo 2016: Turbomachinery Technical Conference and Exposition. New York: ASME, 2016: 1-9.
|
[7] |
西格德·斯科格斯特德, 伊恩·波斯尔思韦特. 多变量反馈控制分析与设计[M]. 韩崇昭, 张爱民, 刘晓风, 等译. 西安: 西安交通大学出版社, 2011: 57-99.
SKOGESTAD S, POSTLETHWAITE I. Multivariable feedback control: Analysis and design[M]. HAN C Z, ZHANG A M, LIU X F, et al, translated. Xi'an: Xi'an Jiaotong University Press, 2011: 57-99(in Chinese).
|
[8] |
RICHTER H. A multi-regulator sliding mode control strategy for output-constrained systems[J]. Automatica, 2011, 47(10): 2251-2259. doi: 10.1016/j.automatica.2011.08.003
|
[9] |
理查特. 涡扇发动机先进控制[M]. 覃道亮, 王曦, 译. 北京: 国防工业出版社, 2013: 42-75.
RICHTER H. Advanced control of turbofan engines[M]. QIN D L, WANG X, translated. Beijing: National Defense Industry Press, 2013: 42-75(in Chinese).
|
[10] |
BOYD S P, CHAOUI E L. Method of centers for minimizing generalized eigenvalues[J]. Linear Algebra and its Applications, 1993, 188-189: 63-111. doi: 10.1016/0024-3795(93)90465-Z
|
[11] |
GAHINET P. Explicit controller formulas for LMI-based H∞ synthesis[J]. Automatica, 1996, 32(7): 1007-1014. doi: 10.1016/0005-1098(96)00033-7
|
[12] |
BOYD S P, GHAOUI E L, FERON E, et al. Linear matrix inequalities in systems and control theory[M]. Philadelphia: SIAM, 1994: 7-27.
|
[13] |
高金凤, 俞立, 王春平. 线性矩阵不等式及其在控制工程中的应用[J]. 控制工程, 2003, 10(2): 145-148. doi: 10.3969/j.issn.1671-7848.2003.02.015
GAO J F, YU L, WANG C P. Linear matrix inequality and its application in control engineering[J]. Control Engineering, 2003, 10(2): 145-148(in Chinese). doi: 10.3969/j.issn.1671-7848.2003.02.015
|
[14] |
崔颖, 王曦. 涡扇发动机极点配置圆的多变量PI控制设计[J]. 航空发动机, 2019, 45(3): 31-38.
CUI Y, WANG X. Multivariable PI control design for pole placing circle of turbofan engine[J]. Aeroengine, 2019, 45(3): 31-38(in Chinese).
|
[15] |
胡东, 陈文华, 周川. 基于LMI的一类LPV系统的自调整输出反馈极点配置[J]. 南京航空航天大学学报, 1998, 30(4): 388-393.
HU D, CHEN W H, ZHOU C. Self-tuning output feedback pole placement for a class of LPV systems based on LMI[J]. Journal of Nanjing University of Aeronautics and Astronautics, 1998, 30(4): 388-393(in Chinese).
|
[16] |
FENG Z, WANG Q G, LEE T H. On the design of multivariable PID controllers via LMI approach[J]. Automatica, 2002, 38(3): 517-526. doi: 10.1016/S0005-1098(01)00237-0
|
[17] |
SCHERER C, GAHINET P, CHILALI M. Multiobjective output-feedback control via LMI optimization[J]. IEEE Transactions on Atuomatic Control, 1997, 42(7): 896-910. doi: 10.1109/9.599969
|
[18] |
KANEV S, SCHERER C, VERHAEGEN M, et al. Robust output-feedback controller design via local BMI optimization[J]. Automatica, 2004, 40(7): 1115-1127. doi: 10.1016/j.automatica.2004.01.028
|
[19] |
WOLODKIN G, BAOAS G J, GARRARD W. Application of parameter-dependent robust control synthesis to turbofan engines[J]. Journal of Guidance, Control, and Dynamics, 1999, 22(6): 833-838. doi: 10.2514/2.4460
|
[20] |
PARSONS D A. N-dot schedules dynamic compensation system for gas turbines-inputs sum of speed and rate of change of speed of gas generator to schedule to output desired acceleration as function of generator speed: US, 5029441[P]. 1991-07-09.
|
[21] |
蔡常鹏, 郑前钢, 颜秋英, 等. 军用小涵道比涡扇发动机最大状态控制计划鲁棒性分析[J]. 推进技术, 2022, 43(5): 1-8.
CAI C P, ZHENG Q G, YAN Q Y, et al. Robustness analysis of maximum state control plan for military small bypass ratio turbofan engine[J]. Journal of Porpulsion Technology, 2022, 43(5): 1-8(in Chinese).
|
[1] | WANG Z Y,XIANG Z R,ZHI J Y,et al. Physiological signal denoising method based on multi-spectrum adaptive wavelet and blind source separation[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(3):910-921 (in Chinese). doi: 10.13700/j.bh.1001-5965.2023.0179. |
[2] | QIN H L,ZHANG Y,SHI G T,et al. Doppler positioning technology based on Globalstar opportunity signals[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(2):360-367 (in Chinese). doi: 10.13700/j.bh.1001-5965.2023.0013. |
[3] | GONG F X,DIWU Y G. Joint algorithm for time of arrival estimation of S-mode baseband signals with low SNR[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(2):380-388 (in Chinese). doi: 10.13700/j.bh.1001-5965.2023.0027. |
[4] | DENG Tianmin, YU Yang, CHEN Yuetian, XIE Pengfei. Small object detection algorithm for aerial photography based on adaptive compound convolution[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2024.0135 |
[5] | CHEN J C,YANG X,MA Y X,et al. Model-free adaptive cascade control for temperature system of a hot wind tunnel[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(5):1713-1720 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0528. |
[6] | NIU G C,TIAN Y B,XIONG Y. Obstacle detection and tracking method based on millimeter wave radar and LiDAR[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(5):1481-1490 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0541. |
[7] | WANG Xiaoliang, WANG Congsheng, SHI Yuxiang, HE Weikun. The Classification Method of Multirotor Drones and Flying Birds under Low Signal-to-Noise Ratio for Radar[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2024.0585 |
[8] | QI Hao, FU Yue-xin, HU Zhu-hua, WU Jia-qi, ZHAO Yao-chi. A lightweight semantic VSLAM approach based on adaptive thresholding and speed optimization[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2023.0552 |
[9] | ZHANG Anqi, CAO Ronggang, ZHOU Yu, LI Jiawu, CAO Yuxi, YU Yongbin. Research on Fast and High Precision Signal Processing Method for FM Fuze Based on 2D-FFT and 2D-CFAR[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2023.0827 |
[10] | YANG Qiu-yan, HAO Xin-hong, QIAO Cai-xia, YANG Jin. Anti-Frequency Sweeping Jamming Method for Linear FMCW Fuze Based on CFAR[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2023-0660 |
[11] | XIA Y X,FANG Z G. Degradation-shock competing failure modeling considering randomness of failure threshold[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(8):2079-2088 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0576. |
[12] | NIU G C,WANG Y Y,TIAN Y B. LiDAR obstacle detection based on improved density clustering[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(10):2608-2616 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0733. |
[13] | WU S Y,YANG D K,WANG F,et al. GNSS-R BSAR range-Doppler imaging algorithm based on synchronization of direct and echo signal[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(3):588-596 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0310. |
[14] | ZHANG P,ZHOU Q X,YU H Q,et al. Fast detection method of mental fatigue based on EEG signal characteristics[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(1):145-154 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0211. |
[15] | WANG Zhenyu, XIANG Zerui, ZHI Jinyi, DING Tiecheng, ZOU Rui. Multi-spectrum Adaptive Wavelet Coupling with Blind Source Separation for Physiological Signal Denoising[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2023-0179 |
[16] | XIE C C,ZHU L P,MENG Y,et al. Design of adaptive deformation wing control system based on system identification[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(10):2761-2770 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0717. |
[17] | CHEN H Z,SUN R,QIU M,et al. An adaptive noise variance based fault detection algorithm for GNSS positioning[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(2):406-421 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0222. |
[18] | SUN Ren-hui, LIU Hao, DENG Kai-lian, YAN Shuai. Window-adaptive reconstruction for low-delay video compressive sensing[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2023.0333 |
[19] | MENG Wei-jun, AN Wen, MA Su-gang, YANG Xiao-bao. An Object Detection Algorithm Based on Feature Enhancement and Adaptive Threshold Non-maximum Suppression[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2023.0534 |
[20] | CHENG Keyang, RONG Lan, JIANG Senlin, ZHAN Yongzhao. Double drive adaptive super-resolution reconstruction method of remote sensing images for object detection[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(8): 1343-1352. doi: 10.13700/j.bh.1001-5965.2021.0517 |