HU Xunyong, YANG Xiaomei, LI Haoyi, et al. Structural missing image inpainting based on low rank and sparse prior[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(5): 855-862. doi: 10.13700/j.bh.1001-5965.2020.0663(in Chinese)
Citation: HU Xunyong, YANG Xiaomei, LI Haoyi, et al. Structural missing image inpainting based on low rank and sparse prior[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(5): 855-862. doi: 10.13700/j.bh.1001-5965.2020.0663(in Chinese)

Structural missing image inpainting based on low rank and sparse prior

doi: 10.13700/j.bh.1001-5965.2020.0663
Funds:

Science and Technology Program of Province Sichuan (Key Research and Development Program) 2020YFS0085

More Information
  • Corresponding author: YANG Xiaomei, E-mail: yangxiaomei@scu.edu.cn
  • Received Date: 26 Nov 2020
  • Accepted Date: 26 Feb 2021
  • Publish Date: 20 May 2022
  • To handle the problem that the image matrix completion algorithm based on low rank prior cannot effectively deal with the structural missing image inpainting, a matrix completion model using double prior on the observation matrix was established. The sparse prior was integrated with low rank prior, so as to make better use of the prior characteristics of the observation matrix. The model used low rank prior and sparse prior to regularize the matrix by using the correlation between rows and columns and within the row and column, respectively. Furthermore, in order to more accurately approximate the rank function, the truncated Schatten-p norm was used to replace the nuclear norm as the low rank prior. Thus, a matrix completion model integrating low rank and sparse prior was proposed, and the alternating direction method of multiplier was used to solve the proposed completion model effectively. The experimental results show that the details of the inpainting image are clear. Compared with the truncated nuclear norm model algorithm, the corresponding improvement ranges of peak signal-to-noise ratio and structure similarity are 2%-44% and 0.7%-8%, respectively.

     

  • [1]
    LI W, ZHAO L, LIN Z J, et al. Non-local image inpainting using low-rank matrix completion[J]. Computer Graphics Forum, 2015, 34(6): 111-122. doi: 10.1111/cgf.12521
    [2]
    HU Y, ZHANG D, YE J, et al. Fast and accurate matrix completion via truncated nuclear norm regularization[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2013, 35(9): 2117-2130. doi: 10.1109/TPAMI.2012.271
    [3]
    陈蕾, 陈松灿. 矩阵补全模型及其算法研究综述[J]. 软件学报, 2017, 28(6): 1547-1564.

    CHEN L, CHEN S C. Survey on matrix completion models and algorithms[J]. Journal of Software, 2017, 28(6): 1547-1564(in Chinese).
    [4]
    XUE S K, QIU W Y, LIU F, et al. Double weighted truncated nuclear norm regularization for low-rank matrix completion[EB/OL]. (2019-01-07)[2020-11-01],
    [5]
    WANG H Y, ZHAO R Z, CEN Y G. Rank adaptive atomic decomposition for low-rank matrix completion and its application on image recovery[J]. Neurocomputing, 2014, 145: 374-380. doi: 10.1016/j.neucom.2014.05.021
    [6]
    LIU G, LIN Z, YAN S, et al. Robust recovery of subspace structures by low-rank representation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2013, 35(1): 171-184. doi: 10.1109/TPAMI.2012.88
    [7]
    RECHT B, FAZEL M, PARRILO P A. Guaranteed minimum-rank solutions of linear matrix equations via nuclear norm minimization[J]. SIAM Review, 2010, 52(3): 471-501. doi: 10.1137/070697835
    [8]
    杨润宇, 贾亦雄, 徐鹏, 等. 截断核范数和全变差正则化高光谱图像复原[J]. 中国图象图形学报, 2019, 24(10): 1801-1812.

    YANG R Y, JIA Y X, XU P, et al. Hyperspectral image restoration with truncated nuclear norm minimization and total variation regularization[J]. Journal of Image and Graphics, 2019, 24(10): 1801-1812(in Chinese).
    [9]
    NIE F, HUANG H, DING C. Low-rank matrix recovery via efficient Schatten p-norm minimization[C]//Proceedings of the 26th AAAI Conference on Artificial Intelligence, 2012: 655-661.
    [10]
    FENG L, SUN H J, SUN Q S, et al. Image compressive sensing via truncated Schatten-p norm regularization[J]. Signal Processing: Image Communication, 2016, 47: 28-41. doi: 10.1016/j.image.2016.05.012
    [11]
    YANG J Y, YANG X M, YE X C, et al. Reconstruction of structurally-incomplete matrices with reweighted low-rank and sparsity priors[J]. IEEE Transactions on Image Processing, 2017, 26(3): 1158-1172. doi: 10.1109/TIP.2016.2642784
    [12]
    CANDÈS E, RECHT B. Exact matrix completion via convex optimization[J]. Communications of the ACM, 2012, 55(6): 111-119. doi: 10.1145/2184319.2184343
    [13]
    LIN Z C, CHEN M M, MA Y. The augmented Lagrange multiplier method for exact recovery of corrupted low-rank matrices[EB/OL]. (2013-10-18)[2020-11-01].
    [14]
    CAI J F, CANDS E J, SHEN Z W. A singular value thresholding algorithm for matrix completion[J]. SIAM Journal on Optimization, 2010, 20(4): 1956-1982. doi: 10.1137/080738970
    [15]
    TOH K C, YUN S. An accelerated proximal gradient algorithm for nuclear norm regularized linear least squares problems[J]. Pacific Journal of Optimization, 2010, 6(3): 615-640.
    [16]
    YANG J C, WRIGHT J, HUANG T S, et al. Image super-resolution via sparse representation[J]. IEEE Transactions on Image Processing, 2010, 19(11): 2861-2873. doi: 10.1109/TIP.2010.2050625
    [17]
    LIANG X, REN X, ZHANG Z, et al. Repairing sparse low-rank texture[C]//European Conference on Computer Vision. Berlin: Springer, 2012: 482-495.
    [18]
    DONG J, XUE Z C, GUAN J, et al. Low rank matrix completion using truncated nuclear norm and sparse regularizer[J]. Signal Processing: Image Communication, 2018, 68: 76-87. doi: 10.1016/j.image.2018.06.007
    [19]
    王家寿, 盛伟, 王保云. 图像修复中截断P范数正则化的矩阵填充算法[J]. 湖南师范大学自然科学学报, 2019, 42(2): 71-79.

    WANG J S, SHENG W, WANG B Y. Matrix completion via truncated Schatten p-norm regularization in image inpainting[J]. Journal of Natural Science of Hunan Normal University, 2019, 42(2): 71-79(in Chinese).
    [20]
    BOYD S. Distributed optimization and statistical learning via the alternating direction method of multipliers[M]. Hanover: Now Publishers, 2010: 3.
    [21]
    MERHAV N, KRESCH R. Approximate convolution using DCT coefficient multipliers[J]. IEEE Transactions Circuits and Systems for Video Technology, 1998, 8(4): 378-385. doi: 10.1109/76.709404
    [22]
    ZUO W M, MENG D Y, ZHANG L, et al. A generalized iterated shrinkage algorithm for non-convex sparse coding[C]//2013 International Conference on Computer Vision. Piscataway: IEEE Press, 2013: 217-224.
    [23]
    DONOHO D L, JOHNSTONE I M. Adapting to unknown smoothness via wavelet shrinkage[J]. Journal of the American Statistical Association, 1995, 90(432): 1200-1224. doi: 10.1080/01621459.1995.10476626
    [24]
    ELHARROUSS O, ALMAADEED N, ALMAADEED S, et al. Image inpainting: A review[J]. Neural Processing Letters, 2020, 51(2): 2007-2028.
  • Relative Articles

    [1]DING Yuan, WU Kaijun. Inpainting Model of Dunhuang Murals Guided by Frequency Domain Diffusion Information[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2024.0701
    [2]SHI Jiliang, ZHANG Qian, ZHOU Zunfu, YANG Sihong. Face Image Inpainting Combining Semantic Segmentation and Edge Texture[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2024.0258
    [3]LI Y R,YAO T,ZHANG L L,et al. Image-text matching algorithm based on multi-level semantic alignment[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(2):551-558 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0385.
    [4]LIU Zheng-yan, WANG Hui-wen, ZHAO Qing. Self-weighted scaled simplex representation subspace clustering[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2023.0617
    [5]XU W S,XU T Q,MA H X,et al. Dynamic characteristics of flexible micro-positioning platforms based on transfer matrix method[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(11):3566-3577 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0845.
    [6]ZHOU Hao, TAO Tao. Single nighttime image dehazing algorithm based on maximum reflectivity prior and variational regularization[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2024.0457
    [7]ZHANG M,FAN C G,YU S Q. An elliptical damage detection method using full matrix capture for stiffened plate[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(6):2033-2042 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0568.
    [8]SU Qian-xiao, QIAO De-xin, REN Yi-li, FENG Zhou, LIN Sheng-lan, HUANG Rui-qi. Inpainting of blank strips in imaging logging images based on Fourier convolution[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2023.0754
    [9]WANG Yue, ZHANG Xiong, SHANGGUAN Hong, CUI Xueying, ZHANG Pengcheng, GUI Zhiguo. A low-dose CT deep unfolding network based on a sparse prior[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2024.0049
    [10]HUANG S Y,XIA Y K,YANG Y,et al. Image dehazing network based on dark channel prior guidance[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(9):2717-2726 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0758.
    [11]ZHANG H M,WU J N,ZHAO Y M,et al. Aero-engine data reconstruction based on truncated p-shrinkage norm[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(1):39-47 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0263.
    [12]DUAN J Z,WANG C J. Sensitivity encoding reconstruction algorithm based on multi-category dictionary learning[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(7):2123-2132 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0571.
    [13]CHEN Y,CHEN J,TAO M F. Mural inpainting progressive generative adversarial networks based on structure guided[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(6):1247-1259 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0440.
    [14]CHEN Y,CHEN J,TAO M F. Mural inpainting with generative adversarial networks based on multi-scale feature and attention fusion[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(2):254-264 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0242.
    [15]CHEN G,LIN D,CHEN F,et al. Image segmentation based on Logistic regression sparrow algorithm[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(3):636-646 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0268.
    [16]MA M,YU J,FAN W R. CFRP material detection based on improved joint sparse EIT algorithm[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(2):265-272 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0244.
    [17]LI H Y,CHEN J,YU P F,et al. Bimodal text-guided image inpainting algorithm[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(10):2547-2557 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0720.
    [18]LI Wenxuan, JIAO Wenhai, WANG Kai, QIU Ruijin, SUN Shuxian. Monitoring and analysis on GPS P(Y) code power enhancement[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(11): 2193-2203. doi: 10.13700/j.bh.1001-5965.2021.0676
    [19]LIU Danyang, FANG Quan, ZHANG Xiaowei, HU Jun, QIAN Shengsheng, XU Changsheng. Knowledge graph completion based on graph contrastive attention network[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(8): 1428-1435. doi: 10.13700/j.bh.1001-5965.2021.0523
    [20]HU Kai, ZHAO Jian, LIU Yu, NIU Yukai, JI Gang. Images inpainting via structure guidance[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(7): 1269-1277. doi: 10.13700/j.bh.1001-5965.2021.0004
  • Cited by

    Periodical cited type(2)

    1. 马宇欣,海宇,李中余,黄鹏,王朝栋,武俊杰,杨建宇. 稀疏轨迹毫米波雷达三维高分辨成像算法. 雷达学报. 2023(05): 1000-1013 .
    2. 李海燕,陈杰,余鹏飞,李海江,张榆锋. 双重模态文本引导的图像修复算法. 北京航空航天大学学报. 2023(10): 2547-2557 . 本站查看

    Other cited types(3)

  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(5)  / Tables(4)

    Article Metrics

    Article views(484) PDF downloads(62) Cited by(5)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return