Citation: | HU Xunyong, YANG Xiaomei, LI Haoyi, et al. Structural missing image inpainting based on low rank and sparse prior[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(5): 855-862. doi: 10.13700/j.bh.1001-5965.2020.0663(in Chinese) |
To handle the problem that the image matrix completion algorithm based on low rank prior cannot effectively deal with the structural missing image inpainting, a matrix completion model using double prior on the observation matrix was established. The sparse prior was integrated with low rank prior, so as to make better use of the prior characteristics of the observation matrix. The model used low rank prior and sparse prior to regularize the matrix by using the correlation between rows and columns and within the row and column, respectively. Furthermore, in order to more accurately approximate the rank function, the truncated Schatten-p norm was used to replace the nuclear norm as the low rank prior. Thus, a matrix completion model integrating low rank and sparse prior was proposed, and the alternating direction method of multiplier was used to solve the proposed completion model effectively. The experimental results show that the details of the inpainting image are clear. Compared with the truncated nuclear norm model algorithm, the corresponding improvement ranges of peak signal-to-noise ratio and structure similarity are 2%-44% and 0.7%-8%, respectively.
[1] |
LI W, ZHAO L, LIN Z J, et al. Non-local image inpainting using low-rank matrix completion[J]. Computer Graphics Forum, 2015, 34(6): 111-122. doi: 10.1111/cgf.12521
|
[2] |
HU Y, ZHANG D, YE J, et al. Fast and accurate matrix completion via truncated nuclear norm regularization[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2013, 35(9): 2117-2130. doi: 10.1109/TPAMI.2012.271
|
[3] |
陈蕾, 陈松灿. 矩阵补全模型及其算法研究综述[J]. 软件学报, 2017, 28(6): 1547-1564. https://www.cnki.com.cn/Article/CJFDTOTAL-RJXB201706016.htm
CHEN L, CHEN S C. Survey on matrix completion models and algorithms[J]. Journal of Software, 2017, 28(6): 1547-1564(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-RJXB201706016.htm
|
[4] |
XUE S K, QIU W Y, LIU F, et al. Double weighted truncated nuclear norm regularization for low-rank matrix completion[EB/OL]. (2019-01-07)[2020-11-01], https://arxiv.org/abs/1901.01711.
|
[5] |
WANG H Y, ZHAO R Z, CEN Y G. Rank adaptive atomic decomposition for low-rank matrix completion and its application on image recovery[J]. Neurocomputing, 2014, 145: 374-380. doi: 10.1016/j.neucom.2014.05.021
|
[6] |
LIU G, LIN Z, YAN S, et al. Robust recovery of subspace structures by low-rank representation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2013, 35(1): 171-184. doi: 10.1109/TPAMI.2012.88
|
[7] |
RECHT B, FAZEL M, PARRILO P A. Guaranteed minimum-rank solutions of linear matrix equations via nuclear norm minimization[J]. SIAM Review, 2010, 52(3): 471-501. doi: 10.1137/070697835
|
[8] |
杨润宇, 贾亦雄, 徐鹏, 等. 截断核范数和全变差正则化高光谱图像复原[J]. 中国图象图形学报, 2019, 24(10): 1801-1812. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTB201910017.htm
YANG R Y, JIA Y X, XU P, et al. Hyperspectral image restoration with truncated nuclear norm minimization and total variation regularization[J]. Journal of Image and Graphics, 2019, 24(10): 1801-1812(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTB201910017.htm
|
[9] |
NIE F, HUANG H, DING C. Low-rank matrix recovery via efficient Schatten p-norm minimization[C]//Proceedings of the 26th AAAI Conference on Artificial Intelligence, 2012: 655-661.
|
[10] |
FENG L, SUN H J, SUN Q S, et al. Image compressive sensing via truncated Schatten-p norm regularization[J]. Signal Processing: Image Communication, 2016, 47: 28-41. doi: 10.1016/j.image.2016.05.012
|
[11] |
YANG J Y, YANG X M, YE X C, et al. Reconstruction of structurally-incomplete matrices with reweighted low-rank and sparsity priors[J]. IEEE Transactions on Image Processing, 2017, 26(3): 1158-1172. doi: 10.1109/TIP.2016.2642784
|
[12] |
CANDÈS E, RECHT B. Exact matrix completion via convex optimization[J]. Communications of the ACM, 2012, 55(6): 111-119. doi: 10.1145/2184319.2184343
|
[13] |
LIN Z C, CHEN M M, MA Y. The augmented Lagrange multiplier method for exact recovery of corrupted low-rank matrices[EB/OL]. (2013-10-18)[2020-11-01]. https://arxiv.org/abs/1009.5055.
|
[14] |
CAI J F, CANDS E J, SHEN Z W. A singular value thresholding algorithm for matrix completion[J]. SIAM Journal on Optimization, 2010, 20(4): 1956-1982. doi: 10.1137/080738970
|
[15] |
TOH K C, YUN S. An accelerated proximal gradient algorithm for nuclear norm regularized linear least squares problems[J]. Pacific Journal of Optimization, 2010, 6(3): 615-640.
|
[16] |
YANG J C, WRIGHT J, HUANG T S, et al. Image super-resolution via sparse representation[J]. IEEE Transactions on Image Processing, 2010, 19(11): 2861-2873. doi: 10.1109/TIP.2010.2050625
|
[17] |
LIANG X, REN X, ZHANG Z, et al. Repairing sparse low-rank texture[C]//European Conference on Computer Vision. Berlin: Springer, 2012: 482-495.
|
[18] |
DONG J, XUE Z C, GUAN J, et al. Low rank matrix completion using truncated nuclear norm and sparse regularizer[J]. Signal Processing: Image Communication, 2018, 68: 76-87. doi: 10.1016/j.image.2018.06.007
|
[19] |
王家寿, 盛伟, 王保云. 图像修复中截断P范数正则化的矩阵填充算法[J]. 湖南师范大学自然科学学报, 2019, 42(2): 71-79. https://www.cnki.com.cn/Article/CJFDTOTAL-HNSZ201902012.htm
WANG J S, SHENG W, WANG B Y. Matrix completion via truncated Schatten p-norm regularization in image inpainting[J]. Journal of Natural Science of Hunan Normal University, 2019, 42(2): 71-79(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HNSZ201902012.htm
|
[20] |
BOYD S. Distributed optimization and statistical learning via the alternating direction method of multipliers[M]. Hanover: Now Publishers, 2010: 3.
|
[21] |
MERHAV N, KRESCH R. Approximate convolution using DCT coefficient multipliers[J]. IEEE Transactions Circuits and Systems for Video Technology, 1998, 8(4): 378-385. doi: 10.1109/76.709404
|
[22] |
ZUO W M, MENG D Y, ZHANG L, et al. A generalized iterated shrinkage algorithm for non-convex sparse coding[C]//2013 International Conference on Computer Vision. Piscataway: IEEE Press, 2013: 217-224.
|
[23] |
DONOHO D L, JOHNSTONE I M. Adapting to unknown smoothness via wavelet shrinkage[J]. Journal of the American Statistical Association, 1995, 90(432): 1200-1224. doi: 10.1080/01621459.1995.10476626
|
[24] |
ELHARROUSS O, ALMAADEED N, ALMAADEED S, et al. Image inpainting: A review[J]. Neural Processing Letters, 2020, 51(2): 2007-2028.
|