Li Jiajun, Eriqitai, Wang Qianget al. Jet mixing enhancement by pulsed blowing[J]. Journal of Beijing University of Aeronautics and Astronautics, 2009, 35(12): 1491-1494. (in Chinese)
Citation: ZHANG Honghong, GAN Xusheng, XIN Jianlin, et al. Multi-aircraft conflict resolution algorithm based on cooperative game[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(5): 863-871. doi: 10.13700/j.bh.1001-5965.2020.0670(in Chinese)

Multi-aircraft conflict resolution algorithm based on cooperative game

doi: 10.13700/j.bh.1001-5965.2020.0670
Funds:

National Natural Science Foundation of China 61601497

President's Foundation of Air Force Engineering University XZJ2020005

More Information
  • Corresponding author: GAN Xusheng, E-mail: gxsh15934896556@qq.com
  • Received Date: 01 Dec 2020
  • Accepted Date: 08 Jan 2021
  • Publish Date: 20 May 2022
  • In order to solve the problem of inequity of individual cost in conflict resolution of low-altitude UAV, a multi-aircraft conflict resolution algorithm based on the concept of "nucleolus solution" in cooperative game is proposed. According to the characteristics of low-altitude multi-aircraft conflict scenarios, based on the "nucleolus solution" concept, the UAV conflict resolution payment matrix is established. Combined with the advantages of artificial potential field method and ant colony optimization, a hybrid conflict resolution strategy based on artificial potential field-ant colony optimization (APF-ACO) is proposed. The simulation results show that the APF-ACO hybrid solution strategy has the best performance by integrating the three evaluation indexes of calculation time, feasibility and system efficiency. The solution strategy based on cooperative game "nucleolus solution" can improve individual fairness to a certain extent. At the same time, the priority UAV can be quickly planned to achieve the goal at the expense of a small amount of overall benefits.

     

  • [1]
    SHAKHATREH H, SAWALMEH A, ALFUQAHA A, et al. Unmanned aerial vehicles (UAVs): A survey on civil applications and key research challenges[J]. IEEE Access, 2019, 7: 48572-48634. doi: 10.1109/ACCESS.2019.2909530
    [2]
    TANG X M, JI X Q, LI T. Key technology in multi-UAV conflict detection and resolution strategy[J]. Transactions of Nanjing University of Aeronautics and Astronautics, 2020, 37(2): 175-186.
    [3]
    PEREZ-CARABAZA S, BESADA-PORTAS E, LOPEZ-OROZCO J A, et al. Ant colony optimization for multi-UAV minimum time search in uncertain domains[J]. Applied Soft Computing, 2018, 62(2): 789-806.
    [4]
    管祥民, 吕人力. 基于混合人工势场与蚁群算法的多飞行器冲突解脱方法[J]. 武汉理工大学学报(交通科学与工程版), 2020, 44(1): 28-33. doi: 10.3963/j.issn.2095-3844.2020.01.006

    GUAN X M, LV R L. Conflict resolution method for multiple aircraft based on hybrid artificial potential field and ant colony algorithm[J]. Journal of Wuhan University of Technology (Transportation Science & Engineering), 2020, 44(1): 28-33(in Chinese). doi: 10.3963/j.issn.2095-3844.2020.01.006
    [5]
    KIM N, YOON Y. Cooperative sUAV collision avoidance based on satisficing theory[J]. International Journal of Aeronautical and Space Sciences, 2019, 20(4): 978-986. doi: 10.1007/s42405-019-00183-4
    [6]
    付其喜, 梁晓龙, 张佳强, 等. 双层优化的多无人机合作式冲突探测与解脱[J]. 哈尔滨工业大学学报, 2020, 52(4): 74-83.

    FU Q X, LIANG X L, ZHANG J Q, et al. Cooperative conflict detection and resolution for multiple UAVs using two-layer optimization[J]. Journal of Harbin Institute of Technology, 2020, 52(4): 74-83(in Chinese).
    [7]
    CAI J L, ZHANG N. Mixed integer nonlinear programming for aircraft conflict avoidance by applying velocity and altitude changes[J]. Arabian Journal for Science and Engineering, 2019, 44(10): 8893-8903. doi: 10.1007/s13369-019-03911-w
    [8]
    HERNÁNDEZ-ROMERO E, VALENZUELA A, RIVAS D. Probabilistic multi-aircraft conflict detection and resolution considering wind forecast uncertainty[J]. Aerospace Science and Technology, 2020, 105: 1-17.
    [9]
    钱晓鹏, 张洪海, 田宇, 等. 基于核仁解的低空无人机协作冲突解脱算法[J]. 武汉理工大学学报(交通科学与工程版), 2020, 44(4): 676-681. doi: 10.3963/j.issn.2095-3844.2020.04.017

    QIAN X P, ZHANG H H, TIAN Y, et al. Cooperative conflict resolution algorithm for low-altitude drone based on nucleolus[J]. Journal of Wuhan University of Technology (Transportation Science & Engineering), 2020, 44(4): 676-681(in Chinese). doi: 10.3963/j.issn.2095-3844.2020.04.017
    [10]
    SCHMEIDLER D. The nucleolus of a characteristic function game[J]. SIAM Journal of Applies Mathematics, 1969, 17: 1163-1170. doi: 10.1137/0117107
    [11]
    ZHANG X, SUN H, XU G J, et al. On the core, nucleolus and bargaining sets of cooperative games with fuzzy payoffs[J]. Journal of Intelligent & Fuzzy Systems, 2019, 36(6): 6129-6142.
    [12]
    SZIKLAI B, FLEINER T, SOLYMOSI T. On the core and nucleolus of directed acyclic graph games[J]. Mathematical Programming, 2017, 163: 243-271. doi: 10.1007/s10107-016-1062-y
    [13]
    BERGSTRESSER K, YU P L. Domination structures and multicriteria problems in n-person games[J]. Theory and Decision, 1977, 8(1): 5-48. doi: 10.1007/BF00133085
    [14]
    YI Z W, LI L H, QU X, et al. Using artificial potential field theory for a cooperative control model in a connected and automated vehicles environment[J]. Transportation Research Record, 2020, 2674(9): 1005-1018. doi: 10.1177/0361198120933271
    [15]
    LI D F, PAN Z H, DENG H B. Two-dimensional obstacle avoidance control algorithm for snake-like robot in water based on immersed boundary-lattice Boltzmann method and improved artificial potential field method[J]. Transactions of the Institute of Measurement and Control, 2020, 42(10): 1840-1857. doi: 10.1177/0142331219897992
    [16]
    STODOLA P, MICHENKA K, NOHEL J, et al. Hybrid algorithm based on ant colony optimization and simulated annealing applied to the dynamic traveling salesman problem[J]. Entropy, 2020, 22(8): 1-28.
    [17]
    ADEBAYO K J, ADERIBIGBE F M, DELE-ROTIMI A O. On the development of a hybridized ant colony optimization (HACO) algorithm[J]. American Journal of Computational Mathematics, 2019, 9(4): 358-372.
  • Cited by

    Periodical cited type(11)

    1. 童亮,杨婕,甘旭升,沈堤,杨文达,陈达雄. 基于改进混沌蚁群算法的多机冲突解脱仿真研究. 系统仿真学报. 2025(01): 155-166 .
    2. 马静,戴辉. 基于物联网技术的智能配送机器人避障控制方法. 自动化与仪器仪表. 2025(02): 252-257+261 .
    3. 刘晋州,唐雪琴,韩宝安,王明华. 基于IFS-FOA-ELM的网络安全态势预测方法. 火力与指挥控制. 2024(05): 184-190 .
    4. 葛振林. 基于DBN-MFSVM的玉米跨境供应链风险预警方法. 粮油食品科技. 2024(05): 202-210 .
    5. 张宏宏,李文华,郑家毅,刘宏斌,张鹏,高鹏,甘旭升. 有人/无人机协同作战:概念、技术与挑战. 航空学报. 2024(15): 168-194 .
    6. 谢华,韩斯特,尹嘉男,纪晓辉,杨逸晨. 城市低空无人机飞行计划协同推演与优化调配方法. 航空学报. 2024(19): 269-291 .
    7. 李克南,杨凯琪,郭宇鹏,王红勇. 面向自主运行的多航空器路径博弈协调. 北京航空航天大学学报. 2024(12): 3747-3758 . 本站查看
    8. 刘继新,蒋伶潇,刘禹汐,张新珏. 无人机冲突探测与解脱技术研究概述. 科学技术与工程. 2023(26): 11081-11089 .
    9. 谢华,苏方正,尹嘉男,韩斯特,张新珏. 复杂低空无人机飞行冲突网络建模与精细管理. 航空学报. 2023(18): 221-241 .
    10. 张凯,隋东,邹国良. 可扩展的无人机多机飞行冲突解脱算法研究. 航空计算技术. 2022(02): 62-66 .
    11. 吴学礼,董虎翼,阚海龙,甄然. 基于博弈策略的双无人机冲突解脱方法. 河北科技大学学报. 2022(06): 624-633 .

    Other cited types(6)

  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(10)  / Tables(3)

    Article Metrics

    Article views(923) PDF downloads(97) Cited by(17)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return