Jia Yudong, Ou Pan, Yang Yuanhong, et al. Short fibre delayed self-heterodyne interferometer for ultranarrow laser linewidth measurement[J]. Journal of Beijing University of Aeronautics and Astronautics, 2008, 34(05): 568-571. (in Chinese)
Citation: WAN Bing, HAN Wei, SU Xichao, et al. Carrier-based aircraft departure scheduling optimization based on CE-PF algorithm[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(5): 771-785. doi: 10.13700/j.bh.1001-5965.2020.0674(in Chinese)

Carrier-based aircraft departure scheduling optimization based on CE-PF algorithm

doi: 10.13700/j.bh.1001-5965.2020.0674
Funds:

National Natural Science Foundation of China 61903374

Aeronautical Science Foundation of China 2016ZA01008

More Information
  • Corresponding author: SU Xichao, E-mail: suxich@126.com
  • Received Date: 02 Dec 2020
  • Accepted Date: 12 Mar 2021
  • Publish Date: 20 May 2022
  • Carrier-deck operation scheduling is a key technology to improve the combat effectiveness of aircraft carriers, and the optimization scheduling problem of complex constraints with time, space and resource constraints has been proved to be NP-hard. We study the optimization problem of carrier-based aircraft sortie and departure scheduling, which is abstracted as a zero-buffer hybrid flow shop scheduling model. A mixed integer programming model including aircraft collision avoidance and other constraints is established. Then, a cross entropy-operation profile fitting (CE-PF) optimization intelligent algorithm is proposed to solve the mathematical model. The flowchart of solving algorithm is given. The jobs grouped by heuristic rules are accomplished by the cross-entropy algorithm through Gaussian sampling, the scheduling design of task sorting, operations permutation and constraint checking in the grouped jobs is completed by the operation profile fitting algorithm, and the gap approximation algorithm is used to perform the target value evaluation, elite population selection, sampling parameters update and optimal convergence decision. The simulation results show that the CE-PF algorithm can solve the departure scheduling problem efficiently. The sensitivity analysis shows that the take-off mode and space constraints have a great influence on aircraft sortie efficiency.

     

  • [1]
    屈也频, 金惠明, 何肇雄. 航母舰载机装备体系及指标论证方法[J]. 航空学报, 2018, 39(5): 108-119.

    QU Y P, JIN H M, HE Z X. Carrier-based aircraft equipment system-of-systems and index demonstration method[J]. Acta Aeronuatica et Astronautica Sinica, 2018, 39(5): 108-119(in Chinese).
    [2]
    谢君, 廖松, 石章松. 航母作战部署中的舰载机出动规划模型[J]. 系统工程与电子技术, 2020, 42(1): 128-132.

    XIE J, LIAO S, SHI Z S. Programming model of flight sortie for an aircraft carrier in transit[J]. Systems Engineering and Electronics, 2020, 42(1): 128-132(in Chinese).
    [3]
    姜龙光. 国外航母航空保障系统[M]. 北京: 国防工业出版社, 2016: 1-35.

    JIANG L G. Foreign aircraft carrier aviation support system[M]. Beijing: National Defense Industry Press, 2016: 1-35(in Chinese).
    [4]
    WANG X W, LIU J, SU X C, et al. A review on carrier aircraft dispatch path planning and control on deck[J]. Chinese Journal of Aeronautics, 2020, 33(12): 3039-3057. doi: 10.1016/j.cja.2020.06.020
    [5]
    RYAN J C, CUMMINGS M L, ROY N, et al. Designing an interactive local and global decision support system for aircraft carrier deck scheduling: AIAA-2011-1516[R]. Reston: AIAA, 2011.
    [6]
    MICHINI B, HOW J P. A human-interactive course of action planner for aircraft carrier deck operations[C]//Proceedings of AIAA Information Technology. Reston: AIAA, 2011: 1515.
    [7]
    DASTIDAR R G, FRAZZOLI E. A queueing network based approach to distributed aircraft carrier deck scheduling[C]//Proceedings of AIAA Information Technology. Reston: AIAA, 2011: 1514.
    [8]
    RYAN J C. Evaluating safety protocols for manned unmanned environments through agent based simulation[D]. Cambridge: Massachusetts Institute of Technology, 2014: 35-65.
    [9]
    QI C, WANG D. Dynamic aircraft carrier flight deck task planning based on HTN[J]. IFAC-PapersOnLine, 2016, 49(12): 1608-1613. doi: 10.1016/j.ifacol.2016.07.810
    [10]
    郑茂, 黄胜, 王超. 优先网络排队的舰载机出动回收能力研究[J]. 北京理工大学学报, 2013, 33(10): 1051-1055. doi: 10.3969/j.issn.1001-0645.2013.10.011

    ZHENG M, HUANG S, WANG C. Research on aircraft sortie generation rate with the use of HOL closed queueing network model[J]. Transactions of Beijing Institute of Technology, 2013, 33(10): 1051-1055(in Chinese). doi: 10.3969/j.issn.1001-0645.2013.10.011
    [11]
    司维超, 韩维, 史玮韦. 基于PSO算法的舰载机舰面布放调度方法研究[J]. 航空学报, 2012, 33(11): 2048-2056.

    SI W C, HAN W, SHI W W. Research on deck-disposed scheduling method of carrier planes based on PSO algorithm[J]. Acta Aeronautica et Astronautica Sinica, 2012, 33(11): 2048-2056(in Chinese).
    [12]
    苏析超, 韩维, 萧卫, 等. 基于Memetic算法的舰载机舰面一站式保障调度[J]. 系统工程与电子技术, 2016, 38(10): 2303-2309. doi: 10.3969/j.issn.1001-506X.2016.10.12

    SU X C, HAN W, XIAO W, et al. Pit-stop support scheduling on deck of carrier plane based on Memetic algorithm[J]. Systems Engineering and Electronics, 2016, 38(10): 2303-2309(in Chinese). doi: 10.3969/j.issn.1001-506X.2016.10.12
    [13]
    杨放青, 王超, 姜滨, 等. 舰载机出动回收调度策略生成方法[J]. 北京理工大学学报, 2018, 38(10): 1030-1036.

    YANG F Q, WANG C, JIANG B, el al. A method of policy automated generation for carrier aircraft sortie and recovery scheduling[J]. Transactions of Beijing Institute of Technology, 2018, 38(10): 1030-1036(in Chinese).
    [14]
    ZHANG J F, ZHAO P, ZHANG Y, et al. Criteria selection and multi-objective optimization of aircraft landing problem[J]. Journal of Air Transport Management, 2020, 82: 101734. doi: 10.1016/j.jairtraman.2019.101734
    [15]
    苏析超, 韩维, 张勇, 等. 考虑人机匹配模式的舰载机甲板机务勤务保障调度方法[J]. 航空学报, 2018, 39(12): 222314.

    SU X C, HAN W, ZHANG Y, et al. Scheduling method for maintenance and service support of carrier-based aircraft on flight deck with different man-aircraft matching patterns[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(12): 222314(in Chinese).
    [16]
    SU X C, HAN W, WU Y, et al. A proactive robust scheduling method for aircraft carrier flight deck operations with stochastic durations[J]. Complexity, 2018, 2018: 6932985.
    [17]
    LIU J, HAN W, ZHANG Y, et al. Design of an online nonlinear optimal tracking control method for unmanned ground systems[J]. IEEE Access, 2018, 6: 33251-33260. doi: 10.1109/ACCESS.2018.2846769
    [18]
    JIANG T, SU X, HAN W. Optimization of support scheduling on deck of carrier aircraft based on improved differential evolution algorithm[C]//Proceedings of the 3rd IEEE International Conference on Control Science and Systems Engineering. Piscataway: IEEE Press, 2017: 136-140.
    [19]
    ASHIS G B, NICHOLAS R. Efficiently solving repeated integer linear programming problems by learning solutions of similar linear programming problems using boosting trees: MIT-CSAIL-TR-2015-001[R]. Cambridge: Massachusetts Institute of Technology, 2015: 12-35.
    [20]
    刘翱, 刘克. 舰载机保障作业调度问题研究进展[J]. 系统工程理论与实践, 2017, 37(1): 49-60.

    LIU A, LIU K. Advances in carrier-based aircraft deck operation scheduling[J]. Systems Engineering-Theory and Practice, 2017, 37(1): 49-60(in Chinese).
    [21]
    PINEDO M L. Scheduling theory, algorithms, and systems[M]. 5th ed. Berlin: Springer, 2016: 150-165.
    [22]
    CABO M, POSSANI E. Considerations on applying cross entropy methods to the vehicle routing problem[J]. International Journal of Combinatorial Optimization Problems and Informatics, 2015, 6(3): 22-33.
    [23]
    王桂荣, 李歧强, 丁然, 等. 加工时间不确定的炼钢连铸生产调度串级交叉熵算法[J]. 控制与决策, 2016, 31(7): 1153-1160.

    WANG G R, LI Q Q, DING R, et al. Cascade cross entropy algorithm for steelmaking-continuous casting production scheduling with uncertain processing time[J]. Control and Decision, 2016, 31(7): 1153-1160(in Chinese).
    [24]
    张智, 林圣琳, 朱齐丹, 等. 考虑运动学约束的不规则目标遗传避碰规划算法[J]. 航空学报, 2015, 36(4): 1348-1358.

    ZHANG Z, LIN S L, ZHU Q D, et al. Genetic collision avoidance planning algorithm for irregular shaped object with kinematics constraint[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(4): 1348-1358(in Chinese).
  • Relative Articles

    [1]GU Zhirong, DING Jianyang, CHAI Zhilei. TC-NSGA-II:Multi-Objective Optimization Algorithm for TSN-CAN Gateway Congestion Scheduling[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2025.0031
    [2]SUO X S,WANG Y,ZHU Z. Overall scheme optimization of BWB UAVs based on comprehensive evaluation[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(2):466-477 (in Chinese). doi: 10.13700/j.bh.1001-5965.2023.0250.
    [3]GUO F,HAN W,LIU Y J,et al. Time uncertainty analysis on cyclic operation procedures of carrier aircraft based on MC-GERT[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(3):795-805 (in Chinese). doi: 10.13700/j.bh.1001-5965.2023.0129.
    [4]HE J W,XU X Z,GAO B. Improved moth-flame optimization algorithm with multi-strategy integration[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(9):2862-2871 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0707.
    [5]SUN Hui, ZHANG Xuedong, SUN Lianwei, YANG Kaixin, WANG Rui. MPC-based multi-objective collision avoidance optimization algorithm(Recommended Outstanding Papers)[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2024.0381
    [6]WANG R,LI J M,SHI Y L,et al. Vision-based path planning algorithm of unmanned bird-repelling vehicles in airports[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(5):1446-1453 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0717.
    [7]XING Zhiwei, ZHOU Fangyu, SUN Ke, LI Yating. Considering three-stage scheduling optimization of multi-type flight refueling vehicles with time windows[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2024.0332
    [8]SHAO Haoyuan, LI Daochun, KAN Zi, XIANG Jinwu. Rigid-flexible coupling dynamics simulation of carrier-based aircraft arrested landing under direct lift control[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2024.0616
    [9]XING H X,XING Q H. An optimal scheduling model for scintillation detection of netted radars[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(12):3884-3893 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0924.
    [10]HAN Wei, HAN Xiaohua, SU Xichao, WANG Liusong, WU Haonan. Research on integrated scheduling of shipboard helicopters sortie operation on amphibious assault ship[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2024.0085
    [11]LIU Y J,HAN W,SU X C,et al. Carrier aircraft landing scheduling problem based on improved gray wolf optimization[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(3):803-813 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0280.
    [12]RAN Hua-ming. Airborne sensor multi-task scheduling algorithm based on slide time window[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2023.0488
    [13]ZHU Jiazheng, WANG Cong, LI Xinkai, DONG Yingchao, ZHANG Hongli. A deep reinforcement learning based discrete state transition algorithm for fuzzy flexible job shop scheduling[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2023.0211
    [14]JIANG Yu, ZHANG Shi-miao, CHEN Ming-yang, ZHANG Wen-jing, WU Wei-wei. Two-stage scheduling of apron support vehicles considering multi-vehicle coordination[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2023.0405
    [15]ZHANG X C,WAN Z Q,YAN D. Optimal active twist control for rotor vibration reduction[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(12):3397-3408 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0105.
    [16]TANG Jing-min, HUANG Jia-qi, WANG Bing-wen, SONG Yao-lian, YU Gui-cai. Joint optimization scheme of trajectories and resources allocation for UAV aided communication[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2023.0241
    [17]DU Zhuo-ming, ZHANG Jun-feng, GUI Xu-hao. Scheduling optimization for continuous climb and descend operations in the busy terminal area[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2023.0415
    [18]FAN Z W,YU X Q,DAI Y L. Trade-off for top-level requirements of commercial aircraft using comprehensive evaluation and optimization[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(9):2415-2422 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0670.
    [19]CUI K K,HAN W,LIU Y J,et al. Automatic wave-off control algorithm for carrier aircraft based on DM-DSC[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(4):900-912 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0362.
    [20]YANG Hui, FAN Shuoshuo, WANG Yan, LIU Rongqiang, XIAO Hong. Stiffness optimization of M-shaped boom based on radial basis function surrogate model[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(11): 2121-2129. doi: 10.13700/j.bh.1001-5965.2021.0091
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(12)  / Tables(3)

    Article Metrics

    Article views(652) PDF downloads(62) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return