Citation: | LIN Kang, MA Yunpeng, ZHENG Zewei, et al. Height control of stratospheric aerostat based on secondary airbag[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(5): 762-770. doi: 10.13700/j.bh.1001-5965.2020.0679(in Chinese) |
In the past, when the aerostat hovering or flight control was designed, wind was used as an interference item or resistance, and the propeller was required to overcome the wind resistance. The energy carried by the aerostat is limited, so there is a problem of insufficient energy in the design of the aerostat.According to the characteristics of the stratospheric wind field, this paper uses a secondary airbag to control the height of the aerostat, realizes the utilization of wind fields with different heights in the stratosphere, and can reduce the energy consumption of the aerostat. In this paper, the aerostat height control model is established, backstepping is used to design the aerostat height controller, the state observer is used to estimate the aerostat model error and input error, and simulation analysis is performed to prove the designed controller can effectively control the height of the aerostat. And this paper establishes the change model of the pressure difference between the inside and outside of the airbag when the aerostat height is controlled, and simulates and analyzes the influence of the change of aerostat height on the pressure difference between the inside and outside of the airbag.
[1] |
RONEY J A. Statistical wind analysis for near-space applications[J]. Journal of Atmospheric and Solar-Terrestrial Physics, 2007, 69(13): 1485-1501. doi: 10.1016/j.jastp.2007.05.005
|
[2] |
YANG Y, WU J, ZHENG W. Design, modeling and control for a stratospheric telecommunication platform[J]. Acta Astronautica, 2012, 80(6): 181-189.
|
[3] |
GRACE D, MOHORCIC M. Broadband communications via high-altitude platforms[M]. New York: John Wiley and Sons Ltd., 2011.
|
[4] |
MIURA R, SUZUKI M. Preliminary flight test program on telecom and broadcasting using high altitude platform station[J]. Wireless Personal Communications, 2003, 24(2): 341-361. doi: 10.1023/A:1022507025134
|
[5] |
GONZALO J, LÓPEZ D, DOMÍNGUEZ D, et al. On the capabilities and limitations of high-altitude pseudo-satellites[J]. Progress in Aerospace Sciences, 2018, 98: 37-56. doi: 10.1016/j.paerosci.2018.03.006
|
[6] |
D'OLIVEIRA F A, FRANCISCO C L D, TESSALENO C D. High-altitude platforms present situation and technology trends[J]. Journal of Aerospace Technology and Management, 2016, 8(3): 249-262. doi: 10.5028/jatm.v8i3.699
|
[7] |
赵达, 刘东旭, 孙康文, 等. 平流层飞艇研制现状、技术难点及发展趋势[J]. 航空学报, 2016, 37(1): 45-56. https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201601004.htm
ZHAO D, LIU D X, SUN K W, et al. Research status, technical difficulties and development trend of stratospheric airship[J]. Acta Aeronautics et Astronautica Sinica, 2016, 37(1): 45-56 (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201601004.htm
|
[8] |
陶梦初, 何金海, 刘毅. 平流层准零风层统计特征及准两年周期振荡对其影响分析[J]. 气候与环境研究, 2012, 17(1): 92-102. doi: 10.3878/j.issn.1006-9585.2011.10087
TAO M C, HE J H, LIU Y. Analysis of the characteristics of the stratospheric quasi-zero wind layer and the effects of quasi-biennial oscillation on it[J]. Climatic and Environmental Research, 2012, 17(1): 92-102(in Chinese). doi: 10.3878/j.issn.1006-9585.2011.10087
|
[9] |
BELMONT A D, DARTT D G, NASTROM G D. Variations of stratospheric zonal winds, 20-65 km, 1961-1971[J]. Journal of Applied Meteorology, 1975, 14(4): 585-594. doi: 10.1175/1520-0450(1975)014<0585:VOSZWK>2.0.CO;2
|
[10] |
WANG G. Low stratospheric zero wind layer measurement with rayleigh doppler lidar[C]//International Symposium on Photoelectronic Detection and Imaging. Piscataway: IEEE Press, 2013: 890-504.
|
[11] |
BRADFORD L W, ROBERTS L C. Improved models of upper-level wind for several astronomical observatories[J]. Physics, 2010, 19(2): 820-837.
|
[12] |
FESEN R, BROWN Y. A method for establishing a long duration, stratospheric platform for astronomical research[J]. Experimental Astronomy, 2015, 39(3): 475-493. doi: 10.1007/s10686-015-9459-9
|
[13] |
XU M, HUO W. Orbit control of a stratospheric satellite with parameter uncertainties[J]. Advances in Space Research, 2016, 58(11): 2341-2351. doi: 10.1016/j.asr.2016.08.015
|
[14] |
符文星, 朱苏朋, 闫杰, 等. 平流层卫星轨道控制系统研究[J]. 宇航学报, 2008, 29(5): 1480-1484. doi: 10.3873/j.issn.1000-1328.2008.05.003
FU W X, ZHU S P, YAN J, et al. Orbit control system for stratospheric satellite[J]. Journal of Astronautics, 2008, 29(5): 1480-1484(in Chinese). doi: 10.3873/j.issn.1000-1328.2008.05.003
|
[15] |
AARON K M, HEUN M K, NOCK K T. A method for balloon trajectory control[J]. Advances in Space Research, 2002, 30(5): 1227-1232. doi: 10.1016/S0273-1177(02)00526-4
|
[16] |
VANDERMEULEN I, GUAY M, MCLELLAN P J. Formation control of high-altitude balloons by distributed extremum seeking control[C]//American Control Conference. Piscataway: IEEE Press, 2016: 2524-2529.
|
[17] |
VANDERMEULEN I, GUAY M, MCLELLAN P J. Distributed control of high-altitude balloon formation by extremum-seeking control[J]. IEEE Transactions on Control Systems Technology, 2018, 26(3): 857-873. doi: 10.1109/TCST.2017.2692742
|
[18] |
LIN K, ZHENG Z, WU Z, et al. Path following of a stratospheric satellite by the aid of wind currents[J]. Proceedings of the Institution of Mechanical Engineers, 2019, 233(11): 3983-4003. doi: 10.1177/0954410018811414
|
[19] |
邓小龙, 李魁, 于春锐, 等. 准零风层新型临近空间浮空器区域驻留性能[J]. 国防科技大学学报, 2019, 41(1): 5-12. https://www.cnki.com.cn/Article/CJFDTOTAL-GFKJ201901002.htm
DENG X L, LI K, YU C R, et al. Station-keeping performance of novel near-space aerostat in quasi-zero wind layer[J]. Journal of National University of Defense Technology, 2019, 41(1): 5-12(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-GFKJ201901002.htm
|
[20] |
CHEN W H, YANG J, GUO L, et al. Disturbance-observer-based control and related methods an overview[J]. IEEE Transactions on Industrial Electronics, 2016, 63(2): 1083-1095. doi: 10.1109/TIE.2015.2478397
|
[21] |
HU J, ZHANG H. Immersion and invariance based command-filtered adaptive backstepping control of VTOL vehicles[J]. Automatica, 2013, 49(7): 2160-2167. doi: 10.1016/j.automatica.2013.03.019
|