Tian Yuan, Wang Junbo, Ren Zhanget al. Fuzzy guidance law for interception of exoatmospheric maneuvering targets[J]. Journal of Beijing University of Aeronautics and Astronautics, 2010, 36(7): 816-820. (in Chinese)
Citation: LI Qiuying, LU Minyan, GU Tingyanget al. Construction method of software runtime behavior model for reliability prediction[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(5): 786-794. doi: 10.13700/j.bh.1001-5965.2020.0680(in Chinese)

Construction method of software runtime behavior model for reliability prediction

doi: 10.13700/j.bh.1001-5965.2020.0680
Funds:

National Defense Key Laboratory Support Program WDZC2019601A303

More Information
  • Corresponding author: LI Qiuying, E-mail: li_qiuying@buaa.edu.cn
  • Received Date: 04 Dec 2020
  • Accepted Date: 02 Apr 2021
  • Publish Date: 20 May 2022
  • Runtime behavior model construction is a component of software runtime model construction oriented to reliability prediction. It provides runtime component-to-component dynamic interaction relationship and state transition probability information for software reliability prediction. Based on Java development platform, a construction method of software runtime behavior model based on non-intrusive monitoring is proposed, including the following steps: obtaining the current runtime architecture model; determining the monitoring objects according to the runtime architecture model; declaring the proxy Bean in the monitoring method; declaring the monitoring Bean to realize the extraction of the dynamic component interaction information; declaring the interface between the proxy Bean and the monitoring Bean; based on the construction algorithm, the runtime behavior model is constructed. Finally, based on the Rainbow-znn software, an example is carried out, which verified the feasibility of this method.

     

  • [1]
    PARNAS D. The influence of software structure on reliability[J]. ACM SIGPLAN Notices, 1975, 10(6): 358-362. doi: 10.1145/390016.808458
    [2]
    SHOOMAN M L. Structural models for software reliability prediction[C]//Proceedings of the 2nd International Conference on Software Engineering. Piscataway: IEEE Press, 1976: 268-280.
    [3]
    LITTLEWOOD B. A reliability model for systems with Markov structure[J]. Journal of the Royal Statistical Society Series C (Applied Statistics), 1975, 24(2): 172-177.
    [4]
    CHEUNG R C. A user-oriented software reliability model[J]. IEEE Transactions on Software Engineering, 1980, 6(2): 118-125.
    [5]
    KUBAT P. Assessing reliability of modular software[J]. Operations Research Letters, 1989, 8(1): 35-41. doi: 10.1016/0167-6377(89)90031-X
    [6]
    KRISHNAMURTHY S, MATHUR A P. On the estimation of reliability of a software system using reliabilities of its components[C]//Proceedings of the 8th International Symposium on Software Reliability Engineering. Piscataway: IEEE Press, 1997: 146-153.
    [7]
    YACOUB S, CUKIC B, AMMAR H. A scenario-based reliability analysis approach for component-based software[J]. IEEE Transactions on Reliability, 2004, 53(4): 465-480. doi: 10.1109/TR.2004.838034
    [8]
    YACOUB S, AMMAR H. A methodology for architecture-level reliability risk analysis[J]. IEEE Transactions on Software Engineering, 2002, 28(6): 529-547. doi: 10.1109/TSE.2002.1010058
    [9]
    HEINRICH R. Architectural run-time models for performance and privacy analysis in dynamic cloud applications[J]. Performance Evaluation Review, 2016, 43(4): 13-22. doi: 10.1145/2897356.2897359
    [10]
    OREIZY P, MEDVIDOVIC N, TAYLOR R N. Architecture-based runtime software evolution[C]//Proceedings of the 20th International Conference on Software Engineering. Piscataway: IEEE Press, 1998: 177-186.
    [11]
    BLAIR G, BENCOMO N, FRANCE B. Models@run. time[J]. Computer, 2009, 42(10): 22-27. doi: 10.1109/MC.2009.326
    [12]
    HEINRICH R, JUNG R, SCHMIEDERS E, et al. Architectural run-time models for operator-in-the-loop adaptation of cloud applications[C]//2015 IEEE 9th Symposium on the Maintenance and Evolution of Service-Oriented and Cloud-based Environments. Piscataway: IEEE Press, 2015: 36-40.
    [13]
    黄罡, 梅宏, 杨芙清, 等. 基于软件体系结构的反射式中间件研究[J]. 软件学报, 2003, 14(11): 1819-1826.

    HUANG G, MEI H, YANG F Q, et al. Research on architecture-based reflective middleware[J]. Journal of Software, 2003, 14(11): 1819-1826(in Chinese).
    [14]
    LEMOS R D, GIESE H, MVLLER H A, et al. Software engineering for self-adaptive systems: A second research roadmap[M]. Berlin: Springer, 2013: 1-32.
    [15]
    SZVETITS M, ZDUN U. Systematic literature review of the objectives, techniques, kinds, and architectures of models at runtime[J]. Software & Systems Modeling, 2016, 15(1): 31-69.
    [16]
    LEHMANN G, BLUMENDORF M, TROLLMANN F, et al. Meta-modeling runtime models[C]//Proceedings of the 2010 International Conference on Models in Software Engineering. Berlin: Springer, 2010: 209-223.
    [17]
    BENCOMO N, FRANCE R, CHENG B, et al. Models@run. time: Foundations, applications, and roadmaps[M]. Berlin: Springer, 2014: 47-100.
    [18]
    HUANG A, GARLAN D, SCHMERL B. Rainbow: Architecture-based self-adaptation with reusable infrastructure[C]//Proceedings of the 1st International Conference on Autonomic Computing. Piscataway: IEEE Press, 2004: 46-55.
    [19]
    宋晖, 黄罡, 武义涵, 等. 运行时软件体系结构的建模与维护[J]. 软件学报, 2013, 24(8): 1731-1745.

    SONG H, HUANG G, WU Y H, et al. Modeling and maintaining runtime software architectures[J]. Journal of Software, 2013, 24(8): 1731-1745(in Chinese).
    [20]
    B AU'U R M, SZILÁGVI G, VÖRÖS A, et al. Distributed graph queries for runtime monitoring of cyber-physical systems[C]//International Conference on Fundamental Approaches to Software Engineering. Berlin: Springer, 2018: 111-128.
    [21]
    MOS A, MURPHY J. Performance management in component-oriented systems using a model driven architecture approach[C]//Proceedings of the 6th International Enterprise Distributed Object Computing Conference. Piscataway: IEEE Press, 2002: 227-237.
    [22]
    MOS A, MURPHY J. Performance monitoring of Java component-oriented distributed applications[C]//9th International Conference on Software, Telecommunication & Computer Networks. Piscataway: IEEE Press, 2001: 123-129.
    [23]
    CHENG S W. Rainbow: Cost-effective software architecture-based self-adaptation[D]. Pittsburgh: Carnegie Mellon University, 2008.
  • Relative Articles

    [1]DENG H W,HOU Y J,ZHANG C Y,et al. Mental fatigue recognition algorithm based on cascade forest and multi-modal fusion[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(2):584-593 (in Chinese). doi: 10.13700/j.bh.1001-5965.2023.0030.
    [2]XU C,XIAO Y,DENG P C. Fatigue life prediction of CFRP flat-joggle-flat bonded joint[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(2):518-524 (in Chinese). doi: 10.13700/j.bh.1001-5965.2023.0048.
    [3]DENG J X,CHEN L,LU S T,et al. Damage distribution of composite structures of a certain type aircraft[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(3):920-930 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0379.
    [4]HUO Jiuyuan, LI Xin, CHANG Chen, LI Yufeng, ZHANG Yaonan. Roll bearing life prediction based on multi-scale feature fusion[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2024.0161
    [5]LIU Shenshen, JIANG Bo, HAN Qinghua, YU Jing, YANG Xiaofeng, WEI Dong, ZHU Yandan, GUI Yewei. Study of cumulative thermal deformation characteristics and its impacts under long-endurance aerodynamic-thermal coupling effects[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2023.0486
    [6]YANG J X,TANG S J,LI L,et al. Remaining useful life prediction based on implicit nonlinear Wiener degradation process[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(1):328-340 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0243.
    [7]LI J Q,FANG Q,FAN T C,et al. Fatigue detection of facial 3D physiological feature points in sleep deprivation[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(9):2753-2762 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0733.
    [8]WANG Li-li, YIN Shuo-feng, PAN Yue. Controller fatigue discrimination algorithm based on facial features[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2024.0057
    [9]ZHAO H L,BAI L D. Remaining life prediction of engine by improved similarity with interval partition[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(10):3005-3012 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0762.
    [10]LIU S S,LEI X R,SONG Z Y,et al. Influence of unloading groove opening of port plate of plunger pumps on transient flow field characteristics[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(9):2919-2929 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0713.
    [11]YU Y B,HE Z Q,HE X F,et al. Rotating bending fatigue life prediction of bearing steel based on damage mechanics[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(8):2585-2594 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0639.
    [12]ZHAO Yu-yu, SUO Chao, WANG Yu-xiao. BSVAR-based remaining useful life prediction for aircraft engines[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2023.0643
    [13]WANG K,GUO Y Q,ZHAO W L,et al. Remaining useful life prediction of aeroengine based on SSAE and similarity matching[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(10):2817-2825 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0741.
    [14]LEI J Y,LEI Q N,LI H B,et al. A mesh parameterization method and life reliability-based optimization for turbine blade[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(10):2651-2659 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0708.
    [15]JI Na, LIU Juan, WANG Haoran, GAO Rui, LU Yonglai, LI Fanzhu. Simulation analysis and experimental study on stiffness and fatigue life fluctuation of the rubber bearing for heavy trucks[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2023.0263
    [16]WANG F F,TANG S J,SUN X Y,et al. Remaining useful life prediction based on multi source information with considering random effects[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(11):3075-3085 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0782.
    [17]ZHOU Z T,LIU L,SONG X,et al. Remaining useful life prediction method of rolling bearing based on Transformer model[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(2):430-443 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0247.
    [18]BI Y P,ZHANG T,HE Y T,et al. Corrosion and fatigue life prediction of aircraft typical lap structures based on life envelope[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(8):2200-2206 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0604.
    [19]GAO H H,CHAO Q,XU Z,et al. Piston pump fault diagnosis based on Siamese neural network with small samples[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(1):155-164 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0213.
    [20]FENG Jianguang, ZHENG Zixia, LONG Dongteng, ZHOU Bo, LU Mingquan, ZHENG Heng. Method for predicting on-orbit residual life of satellite atomic clock[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(11): 2215-2221. doi: 10.13700/j.bh.1001-5965.2021.0087
  • Cited by

    Periodical cited type(12)

    1. 班金磊,赵智辉,韩永建,周振华,王飞,耿杰. 聚酰亚胺薄膜疲劳寿命分析和可靠性增长措施. 环境技术. 2024(01): 140-146 .
    2. 唐宏宾,龚杨春,董晋阳,陈思源. 基于CNN-SE-LSTM和多传感器数据的轴向柱塞泵故障诊断. 机床与液压. 2024(16): 224-232 .
    3. 赵红斌. 截割介质物理力学参数对液压冲击截齿破煤率影响的研究. 煤矿机械. 2023(02): 51-54 .
    4. 高翔,李昆,万晓飞,穆文堪,谯维智. 基于双金属柱塞体的缸体轻量化设计分析. 机床与液压. 2023(06): 114-120 .
    5. 唐宏宾,杨婧,唐一. 轴向柱塞泵疲劳损伤分析及寿命预测. 机床与液压. 2023(16): 165-171 .
    6. 侯玉峰,高岩,徐显亮. 燃油调节器壳体裂纹失效分析. 航空发动机. 2022(01): 103-109 .
    7. 陈乐,高文科,冀宏,张磊. 基于HP滤波与ARIMA-GARCH模型的柱塞泵泄漏量预测. 农业工程学报. 2022(10): 61-67 .
    8. 孙晓旭,鲁植雄,陈元. 重型拖拉机液压机械无级变速器箱体疲劳寿命分析. 机械科学与技术. 2022(12): 1844-1851 .
    9. 李耀华,刘洋,宋伟萍,邵攀登,任田园. 基于行驶工况的零部件耐久性测试工况构建. 重庆交通大学学报(自然科学版). 2021(04): 141-146 .
    10. 黄烨. 多缸高压径向柱塞泵设计及泵壳有限元分析. 煤矿机械. 2021(10): 90-92 .
    11. 任晓燕,张国伟,徐宏,孙凤儿,康圆圆,王明杰,牛经纬,徐超,吕伟泽. ZCuPb_(20)Sn_5合金耐磨性能研究. 摩擦学学报. 2020(04): 467-476 .
    12. 南西康,高文科,陈旭峰,孙天齐,冀宏. 基于非线性Wiener过程的柱塞泵剩余使用寿命分析. 液压与气动. 2020(11): 45-52 .

    Other cited types(25)

  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)  / Tables(1)

    Article Metrics

    Article views(613) PDF downloads(38) Cited by(37)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return