Huang Jun, Wu Zhe, Zhu Rongchanget al. Optimized Collocation of Combat Aircraft Weapon Systems for Air Force[J]. Journal of Beijing University of Aeronautics and Astronautics, 1999, 25(5): 546-549. (in Chinese)
Citation: SUN Yibo, ZHANG Wenjing, WANG Rong, et al. Pedestrian re-identification method based on channel attention mechanism[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(5): 881-889. doi: 10.13700/j.bh.1001-5965.2020.0684(in Chinese)

Pedestrian re-identification method based on channel attention mechanism

doi: 10.13700/j.bh.1001-5965.2020.0684
Funds:

National Natural Science Foundation of China 62076246

the Fundamental Research Funds for the Central Universities 2019JKF426

More Information
  • Corresponding author: LI Chong, E-mail: lichong7564@163.com
  • Received Date: 08 Dec 2020
  • Accepted Date: 06 Feb 2021
  • Publish Date: 20 May 2022
  • To address the problem of insufficient expression of pedestrian characteristics, we propose a pedestrian re-identification method based on channel attention mechanism. The channel attention mechanism named SE module is embedded in the backbone network ResNet50 to weight and strengthen the key feature information. The dynamic activation function is used to dynamically adjust the parameters of ReLU according to the input characteristics, and enhance the nonlinear expression ability of the network model. The gradient centralization algorithm is introduced into the Adam optimizer to improve the training speed and generalization ability of the network model. Experiments on the three mainstream datasets: Market1501, DukeMTMC-ReID and CUHK03 show that Rank-1 is increased by 2.17%, 2.38%, and 3.50% respectively, and mAP is increased by 3.07%, 3.39%, and 4.14% respectively. The results indicate that our approach can extract more robust pedestrian expression features and achieve higher recognition accuracy.

     

  • [1]
    YE M, SHEN J, LIN G, et al. Deep learning for person re-identification: A survey and outlook[J/OL]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2021(2021-01-26)[2021-02-01].
    [2]
    ZHENG Z, ZHENG L, YANG Y. A discriminatively learned CNN embedding for person reidentification[J]. ACM Transactions on Multimedia Computing, Communications, and Applications, 2017, 14(1): 1-20.
    [3]
    WANG F, ZUO W, LIN L, et al. Joint learning of single-image and cross-image representations for person re-identification[C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE Press, 2016: 1288-1296.
    [4]
    SUN Y, ZHENG L, YANG Y, et al. Beyond part models: Person retrieval with refined part pooling (and a strong convolutional baseline)[C]//European Conference on Computer Vision. Berlin: Springer, 2018: 480-496.
    [5]
    ZHAO H, TIAN M, SUN S, et al. Spindle Net: Person re-identification with human body region guided feature decomposition and fusion[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE Press, 2017: 1077-1085.
    [6]
    MIAO J, WU Y, LIU P, et al. Pose-guided feature alignment for occluded person re-identification[C]//Proceedings of the IEEE International Conference on Computer Vision. Piscataway: IEEE Press, 2019: 542-551.
    [7]
    LIN Y, ZHENG L, ZHENG Z, et al. Improving person re-identification by attribute and identity learning[J]. Pattern Recognition, 2019, 95: 151-161. doi: 10.1016/j.patcog.2019.06.006
    [8]
    FAN X, LUO H, ZHANG X, et al. SCPNet: Spatial-channel parallelism network for joint holistic and partial person re-identification[C]//Asian Conference on Computer Vision. Berlin: Springer, 2018: 19-34.
    [9]
    HERMANS A, BEYER L, LEIBE B. In defense of the triplet loss for person re-identification[EB/OL]. (2017-11-21)[2020-12-01].
    [10]
    HU J, SHEN L, SUN G. Squeeze-and-excitation networks[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE Press, 2018: 7132-7141.
    [11]
    CHEN Y, DAI X, LIU M, et al. Dynamic ReLU[C]//European Conference on Computer Vision. Berlin: Springer, 2020: 351-367.
    [12]
    IOFFE S, SZEGEDY C. Batch normalization: Accelerating deep network training by reducing internal covariate shift[C]//International Conference on Machine Learning. New York: ACM, 2015: 448-456.
    [13]
    QIAO S, WANG H, LIU C, et al. Weight standardization[EB/OL]. (2020-08-09)[2020-12-01].
    [14]
    YONG H, HUANG J, HUA X, et al. Gradient centralization: A new optimization technique for deep neural networks[C]//European Conference on Computer Vision. Berlin: Springer, 2020: 635-652.
    [15]
    ZHENG L, SHEN L, TIAN L, et al. Scalable person re-identification: A benchmark[C]//Proceedings of the IEEE International Conference on Computer Vision. Piscataway: IEEE Press, 2015: 1116-1124.
    [16]
    ZHENG Z, ZHENG L, YANG Y. Unlabeled samples generated by GAN improve the person re-identification baseline in vitro[C]// Proceedings of the IEEE International Conference on Computer Vision. Piscataway: IEEE Press, 2017: 3754-3762.
    [17]
    LI W, ZHAO R, XIAO T, et al. DeepReID: Deep filter pairing neural network for person re-identification[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE Press, 2014: 152-159.
    [18]
    HE K, ZHANG X, REN S, et al. Deep residual learning for image recognition[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE Press, 2016: 770-778.
    [19]
    CHEN Y C, ZHENG W S, LAI J H, et al. An asymmetric distance model for cross-view feature mapping in person reidentification[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2016, 27(8): 1661-1675.
    [20]
    SUN Y, ZHENG L, DENG W, et al. Svdnet for pedestrian retrieval[C]//Proceedings of the IEEE International Conference on Computer Vision. Piscataway: IEEE Press, 2017: 3800-3808.
    [21]
    ZHENG Z, ZHENG L, YANG Y. Pedestrian alignment network for large-scale person re-identification[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2018, 29(10): 3037-3045.
    [22]
    SU C, LI J, ZHANG S, et al. Pose-driven deep convolutional model for person re-identification[C]//Proceedings of the IEEE International Conference on Computer Vision. Piscataway: IEEE Press, 2017: 3960-3969.
    [23]
    XU J, ZHAO R, ZHU F, et al. Attention-aware compositional network for person re-identification[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE Press, 2018: 2119-2128.
    [24]
    WEI L, ZHANG S, YAO H, et al. GLAD: Global-local-alignment descriptor for pedestrian retrieval[C]//Proceedings of the 25th ACM International Conference on Multimedia. New York: ACM, 2017: 420-428.
    [25]
    LI W, ZHU X, GONG S. Harmonious attention network for person re-identification[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE Press, 2018: 2285-2294.
  • Relative Articles

    [1]PIAN Rong, YANG Fan, ZHANG Ling, LIU Feng-rui, WANG Lin-juan, ZHAO Li-bin. Failure mode study of composite laminated plates under compression-shear loading[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2024.0084
    [2]REN W,LI J,WANG T Y,et al. Meshing theory and performance analysis of point-contact conjugate involute worm gear pair[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(10):3183-3195 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0778.
    [3]ZHANG Luheng, WANG Wenyu, DING Dandan. A Hierarchical Rate Control Method for End-to-End Image Compression[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2024.0461
    [4]CHANG Z N,HU M H,ZHANG Y,et al. A multi-objective optimal control trajectory optimization method for aircraft under wind influence[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(11):3521-3531 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0836.
    [5]ZHAO Yifei, GU Ruijia, REN Xinhui. Method for small unmanned aerial vehicles path planning considering urban low-altitude wind fields[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2024.0281
    [6]CENG Sheng-fu, LIANG Hao-quan, WANG Yan, SUN Kang-wen, ZHONG Zi-hong. status assessment of stratospheric airship based on improved combination weighting and cloud model[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2023.0713
    [7]PAN C Z,HE G,LI Z J,et al. Adaptive filtered control for uncertain electro-hydraulic servo systems with time-varying output constraints[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(6):1819-1828 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0497.
    [8]WEN Bo-qun, MIAO Jing-gang, LU Ying, ZHOU Shu-yu. Short-term prediction of stratospheric wind field based on POD-LSTM network[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2023.0608
    [9]SHE W Q,LIU Y B,CHEN B Y. Altitude control strategy for high-aspect-ratio wings with active morphing[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(5):1746-1752 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0612.
    [10]BAI F C,YANG X X,DENG X L,et al. Station keeping control for aerostat in wind fields based on deep reinforcement learning[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(7):2354-2366 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0629.
    [11]REN D J,XU S H,WANG S P,et al. Modeling and solution method of oil film dynamic coupling for spherical port pair[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(10):2771-2779 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0724.
    [12]ZHANG C,ZHUANG K,YU P,et al. Process control net modelling and analyzing for satellite test and evaluation in launch site[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(8):1948-1955 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0628.
    [13]YUAN M Y,ZHOU J H,HAO Y,et al. Design of contactless power supply system for stratospheric airship anemometer[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(4):972-980 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0344.
    [14]QU Y,WANG S,ZENG L C,et al. Path planning algorithm for airborne pseudolites installed on stratospheric airships[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(5):1071-1082 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0385.
    [15]GAO Yang, XU Guo-ning, WANG Sheng, LI Yong-xiang, CAI Rong, YANG Yan-chu. Stability analysis of stratospheric airship energy system[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2023.0020
    [16]ZHANG Y Z,LI W B,ZHENG T T. Inverted residual target detection algorithm based on LGC[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(6):1287-1293 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0452.
    [17]ZHAI J Q,YANG X X,DENG X L,et al. Global path planning of stratospheric aerostat in uncertain wind field[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(5):1116-1126 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0380.
    [18]ZHANG J L,YANG X X,DENG X L,et al. Altitude control of stratospheric aerostat based on deep reinforcement learning[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(8):2062-2070 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0622.
    [19]YANG Xi-xiang, HOU Zhong-xi, HAN Yu, YANG Yang. Multifactor effect on output performance of solar array for stratospheric airships[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2022.0651
    [20]LONG Yuan, DENG Xiaolong, YANG Xixiang, HOU Zhongxi. Short-term rapid prediction of stratospheric wind field based on PSO-BP neural network[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(10): 1970-1978. doi: 10.13700/j.bh.1001-5965.2021.0068
  • Cited by

    Periodical cited type(2)

    1. 郑志东,刘宁,韩笑雪,戴秋敏. 临近空间飞艇保形升空过程热运动特性研究. 航天返回与遥感. 2023(02): 24-32 .
    2. 翟嘉琪,杨希祥,邓小龙,龙远,张经伦,柏方超. 不确定风场下平流层浮空器全局路径规划. 北京航空航天大学学报. 2023(05): 1116-1126 . 本站查看

    Other cited types(1)

  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)  / Tables(7)

    Article Metrics

    Article views(785) PDF downloads(106) Cited by(3)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return