Chang Shinan, Ai Suxiao, Bi Wenming, et al. Design and calculation for the anti-icing system of an aircraft engine let[J]. Journal of Beijing University of Aeronautics and Astronautics, 2007, 33(06): 649-652. (in Chinese)
Citation: SANG Chen, GUO Jie, TANG Shengjing, et al. Autonomous deformation decision making of morphing aircraft based on DDPG algorithm[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(5): 910-919. doi: 10.13700/j.bh.1001-5965.2020.0686(in Chinese)

Autonomous deformation decision making of morphing aircraft based on DDPG algorithm

doi: 10.13700/j.bh.1001-5965.2020.0686
More Information
  • Corresponding author: GUO Jie, E-mail: guojie1981@bit.edu.cn
  • Received Date: 08 Dec 2020
  • Accepted Date: 07 May 2021
  • Publish Date: 20 May 2022
  • An intelligent 2D deformation decision method based on deep deterministic policy gradient (DDPG) algorithm is proposed for the autonomous deformation decision making of morphing aircraft. The vehicle that can change at the same time the span length and sweepback is taken as the research object, DATCOM is used to calculate the aerodynamic data, and through the analysis, the relation between deformation and aerodynamic characteristics is obtained. DDPG algorithm learning steps are designed based on the given span length and sweepback deformation dynamics equation. The deformation strategy under the condition of symmetrical and asymmetrical deformation is learned and used to train. The simulation results show that the proposed algorithm can achieve fast convergence, and the deformation error is kept within 3%. The trained neural network improves the adaptability of the morphing aircraft to different flight missions, and the optimal flight performance can be obtained in different flight environments.

     

  • [1]
    崔尔杰, 白鹏, 杨基明. 智能变形飞行器的发展道路[J]. 航空制造技术, 2007(8): 38-41. doi: 10.3969/j.issn.1671-833X.2007.08.002

    CUI E J, BAI P, YANG J M. Development path of intelligent deformation aircraft[J]. Aeronautical Manufacturing Technology, 2007(8): 38-41(in Chinese). doi: 10.3969/j.issn.1671-833X.2007.08.002
    [2]
    李小飞, 张梦杰, 王文娟, 等. 变弯度机翼技术发展研究[J]. 航空科学技术, 2020, 31(2): 12-24.

    LI X F, ZHANG M J, WANG W J, et al. Research on variable camber wing technology development[J]. Aeronautical Science & Technology, 2020, 31(2): 12-24(in Chinese).
    [3]
    聂瑞. 变体机翼结构关键技术研究[D]. 南京: 南京航空航天大学, 2018: 12-30.

    NIE R. Research on key technologies of morphing wing structures[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2018: 12-30(in Chinese).
    [4]
    梁帅, 杨林, 杨朝旭, 等. 基于Kalman滤波的变体飞行器T-S模糊控制[J]. 航空学报, 2020, 41(S2): 61-68.

    LIANG S, YANG L, YANG Z X, et al. Kalman filter based T-S fuzzy control for morphing aircraft[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(S2): 61-68(in Chinese).
    [5]
    LEAL P B C, SAVI M A. Shape memory alloy-based mechanism for aeronautical application: Theory, optimization and experiment[J]. Aerospace Science and Technology, 2018, 76: 155-163. doi: 10.1016/j.ast.2018.02.010
    [6]
    XU D, HUI Z, LIU Y, et al. Morphing control of a new bionic morphing UAV with deep reinforcement learning[J]. Aerospace Science and Technology, 2019, 92: 232-243. doi: 10.1016/j.ast.2019.05.058
    [7]
    MNIH V, KAVUKCUGLU K, SILVER D, et al. Human-level control through deep reinforcement learning[J]. Nature, 2015, 518(7540): 529-533. doi: 10.1038/nature14236
    [8]
    SILVER D, HUANG A, MADDISON C J, et al. Mastering the game of go with deep neural networks and tree search[J]. Nature, 2016, 529(7587): 484-489. doi: 10.1038/nature16961
    [9]
    LILLICRAP T P, HUNT J J, PRITZEL A, et al. Continuous control with deep reinforcement learning[J]. Computer Science, 2015, 8(6): 187-200.
    [10]
    MNIH V, BADIA A P, MIRZA M, et al. Asynchronous methods for deep reinforcement learning[EB/OL]. (2016-06-16)[2020-12-01].
    [11]
    SCHULMAN J, WOLSKI F, DHARIWAL P, et al. Proximal policy optimization algorithms[EB/OL]. (2017-08-28)[2020-12-01].
    [12]
    VALASEK J, TANDALE M D, RONG J. A reinforcement learning adaptive control architecture for morphing[J]. Journal of Aerospace Computing, Information, and Communication, 2005, 2(4): 174-195. doi: 10.2514/1.11388
    [13]
    LAMPTON A, NIKSCH A, VALASEK J. Reinforcement learning of a morphing airfoil-policy and discrete learning analysis[J]. Journal of Aerospace Computing, Information, and Communication, 2010, 7(8): 241-260. doi: 10.2514/1.48057
    [14]
    LAMPTON A, NIKSCH A, VALASEK J. Reinforcement learning of morphing airfoils with aerodynamic and structural effects[J]. Journal of Aerospace Computing, Information, and Communication, 2009, 6(1): 30-50. doi: 10.2514/1.35793
    [15]
    温暖, 刘正华, 祝令谱, 等. 深度强化学习在变体飞行器自主外形优化中的应用[J]. 宇航学报, 2017, 38(11): 1153-1159. doi: 10.3873/j.issn.1000-1328.2017.11.003

    WEN N, LIU Z H, ZHU L P, et al. Deep reinforcement learning and its application on autonomous shape optimization for morphing aircrafts[J]. Journal of Astronautics, 2017, 38(11): 1153-1159(in Chinese). doi: 10.3873/j.issn.1000-1328.2017.11.003
    [16]
    闫斌斌, 李勇, 戴沛, 等. 基于增强学习的变体飞行器自适应变体策略与飞行控制方法研究[J]. 西北工业大学学报, 2019, 37(4): 656-663. doi: 10.3969/j.issn.1000-2758.2019.04.003

    YAN B B, LI Y, DAI P, et al. Adaptive wing morphing strategy and flight control method of a morphing aircraft based on reinforcement learning[J]. Journal of Northwestern Polytechnical University, 2019, 37(4): 656-663(in Chinese). doi: 10.3969/j.issn.1000-2758.2019.04.003
    [17]
    杨贯通. 变外形飞行器建模与控制方法研究[D]. 北京: 北京理工大学, 2015: 36-50.

    YANG G T. Research on modeling and control of morphing flight vehicles[D]. Beijing: Beijing Institute of Technology, 2015: 36-50(in Chinese).
  • Cited by

    Periodical cited type(12)

    1. 王帅,晁涛,韩宇辰,杜鹤. 变体飞行器变形策略与控制方法研究进展. 战术导弹技术. 2024(04): 1-15 .
    2. 吴明雨,何贤军,郑纯,陈志华. 基于机器学习的巡飞弹气动优化与制导一体化设计. 兵器装备工程学报. 2024(09): 38-47 .
    3. 王青,刘华华,屈东扬. 一种基于DDPG的变体飞行器智能变形决策方法. 宇航学报. 2024(10): 1560-1567 .
    4. 丁天雲,夏逸,梅泽伟,邵星灵,刘俊. 基于DDPG的变外形航天飞行器碰撞规避的轨迹规划方法. 兵工学报. 2024(11): 3903-3914 .
    5. 张泽鹏,院老虎,杜白雨,张舒然. 变体飞行器LPV建模与内外环鲁棒控制. 战术导弹技术. 2023(01): 105-114 .
    6. 龚开奇,魏宏夔,李嘉玮,宋晓,李勇,李怡昕,张岳. 基于深度强化学习的跳跃式导弹轨迹优化算法. 北京航空航天大学学报. 2023(06): 1383-1393 . 本站查看
    7. 侯百乐,齐义文,李献领,李鑫,唐意雯,郭诗彤. 通信故障下蒸汽发生器水位MPC/DDPG切换控制. 沈阳航空航天大学学报. 2023(05): 66-74 .
    8. 周愉,王永海,杨丁,吴志刚,王剑颖. 一种基于目标分层架构的变形飞行器智能规划方法. 宇航学报. 2023(11): 1670-1682 .
    9. 冉茂鹏,王成才,刘华华,王薇,吕金虎. 变体飞行器控制技术发展现状与展望. 航空学报. 2022(10): 432-449 .
    10. 赵吉松,尚腾,张金明,程晓明,刘蛟龙. 带有控制变量变化率约束的伪谱轨迹优化方法. 宇航学报. 2022(10): 1368-1377 .
    11. 甄子洋,刘攀,陆宇平. 变体飞行器智能变形与飞行控制技术研究进展. 南京航空航天大学学报. 2022(06): 995-1006 .
    12. 张远,黄万伟,聂莹,路坤锋. 一种高速可变形飞行器智能变形决策方法. 宇航学报. 2022(12): 1665-1675 .

    Other cited types(6)

  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(10)  / Tables(6)

    Article Metrics

    Article views(999) PDF downloads(102) Cited by(18)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return