Citation: | SANG Chen, GUO Jie, TANG Shengjing, et al. Autonomous deformation decision making of morphing aircraft based on DDPG algorithm[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(5): 910-919. doi: 10.13700/j.bh.1001-5965.2020.0686(in Chinese) |
An intelligent 2D deformation decision method based on deep deterministic policy gradient (DDPG) algorithm is proposed for the autonomous deformation decision making of morphing aircraft. The vehicle that can change at the same time the span length and sweepback is taken as the research object, DATCOM is used to calculate the aerodynamic data, and through the analysis, the relation between deformation and aerodynamic characteristics is obtained. DDPG algorithm learning steps are designed based on the given span length and sweepback deformation dynamics equation. The deformation strategy under the condition of symmetrical and asymmetrical deformation is learned and used to train. The simulation results show that the proposed algorithm can achieve fast convergence, and the deformation error is kept within 3%. The trained neural network improves the adaptability of the morphing aircraft to different flight missions, and the optimal flight performance can be obtained in different flight environments.
[1] |
崔尔杰, 白鹏, 杨基明. 智能变形飞行器的发展道路[J]. 航空制造技术, 2007(8): 38-41. doi: 10.3969/j.issn.1671-833X.2007.08.002
CUI E J, BAI P, YANG J M. Development path of intelligent deformation aircraft[J]. Aeronautical Manufacturing Technology, 2007(8): 38-41(in Chinese). doi: 10.3969/j.issn.1671-833X.2007.08.002
|
[2] |
李小飞, 张梦杰, 王文娟, 等. 变弯度机翼技术发展研究[J]. 航空科学技术, 2020, 31(2): 12-24. https://www.cnki.com.cn/Article/CJFDTOTAL-HKKX202002002.htm
LI X F, ZHANG M J, WANG W J, et al. Research on variable camber wing technology development[J]. Aeronautical Science & Technology, 2020, 31(2): 12-24(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HKKX202002002.htm
|
[3] |
聂瑞. 变体机翼结构关键技术研究[D]. 南京: 南京航空航天大学, 2018: 12-30.
NIE R. Research on key technologies of morphing wing structures[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2018: 12-30(in Chinese).
|
[4] |
梁帅, 杨林, 杨朝旭, 等. 基于Kalman滤波的变体飞行器T-S模糊控制[J]. 航空学报, 2020, 41(S2): 61-68. https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB2020S2007.htm
LIANG S, YANG L, YANG Z X, et al. Kalman filter based T-S fuzzy control for morphing aircraft[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(S2): 61-68(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB2020S2007.htm
|
[5] |
LEAL P B C, SAVI M A. Shape memory alloy-based mechanism for aeronautical application: Theory, optimization and experiment[J]. Aerospace Science and Technology, 2018, 76: 155-163. doi: 10.1016/j.ast.2018.02.010
|
[6] |
XU D, HUI Z, LIU Y, et al. Morphing control of a new bionic morphing UAV with deep reinforcement learning[J]. Aerospace Science and Technology, 2019, 92: 232-243. doi: 10.1016/j.ast.2019.05.058
|
[7] |
MNIH V, KAVUKCUGLU K, SILVER D, et al. Human-level control through deep reinforcement learning[J]. Nature, 2015, 518(7540): 529-533. doi: 10.1038/nature14236
|
[8] |
SILVER D, HUANG A, MADDISON C J, et al. Mastering the game of go with deep neural networks and tree search[J]. Nature, 2016, 529(7587): 484-489. doi: 10.1038/nature16961
|
[9] |
LILLICRAP T P, HUNT J J, PRITZEL A, et al. Continuous control with deep reinforcement learning[J]. Computer Science, 2015, 8(6): 187-200.
|
[10] |
MNIH V, BADIA A P, MIRZA M, et al. Asynchronous methods for deep reinforcement learning[EB/OL]. (2016-06-16)[2020-12-01]. https://arxiv.org/abs/1602.01783.
|
[11] |
SCHULMAN J, WOLSKI F, DHARIWAL P, et al. Proximal policy optimization algorithms[EB/OL]. (2017-08-28)[2020-12-01]. https://arxiv.org/abs/1707.06347.
|
[12] |
VALASEK J, TANDALE M D, RONG J. A reinforcement learning adaptive control architecture for morphing[J]. Journal of Aerospace Computing, Information, and Communication, 2005, 2(4): 174-195. doi: 10.2514/1.11388
|
[13] |
LAMPTON A, NIKSCH A, VALASEK J. Reinforcement learning of a morphing airfoil-policy and discrete learning analysis[J]. Journal of Aerospace Computing, Information, and Communication, 2010, 7(8): 241-260. doi: 10.2514/1.48057
|
[14] |
LAMPTON A, NIKSCH A, VALASEK J. Reinforcement learning of morphing airfoils with aerodynamic and structural effects[J]. Journal of Aerospace Computing, Information, and Communication, 2009, 6(1): 30-50. doi: 10.2514/1.35793
|
[15] |
温暖, 刘正华, 祝令谱, 等. 深度强化学习在变体飞行器自主外形优化中的应用[J]. 宇航学报, 2017, 38(11): 1153-1159. doi: 10.3873/j.issn.1000-1328.2017.11.003
WEN N, LIU Z H, ZHU L P, et al. Deep reinforcement learning and its application on autonomous shape optimization for morphing aircrafts[J]. Journal of Astronautics, 2017, 38(11): 1153-1159(in Chinese). doi: 10.3873/j.issn.1000-1328.2017.11.003
|
[16] |
闫斌斌, 李勇, 戴沛, 等. 基于增强学习的变体飞行器自适应变体策略与飞行控制方法研究[J]. 西北工业大学学报, 2019, 37(4): 656-663. doi: 10.3969/j.issn.1000-2758.2019.04.003
YAN B B, LI Y, DAI P, et al. Adaptive wing morphing strategy and flight control method of a morphing aircraft based on reinforcement learning[J]. Journal of Northwestern Polytechnical University, 2019, 37(4): 656-663(in Chinese). doi: 10.3969/j.issn.1000-2758.2019.04.003
|
[17] |
杨贯通. 变外形飞行器建模与控制方法研究[D]. 北京: 北京理工大学, 2015: 36-50.
YANG G T. Research on modeling and control of morphing flight vehicles[D]. Beijing: Beijing Institute of Technology, 2015: 36-50(in Chinese).
|