Volume 48 Issue 6
Jun.  2022
Turn off MathJax
Article Contents
HUANG Mingqi, WANG Liangquan, YUAN Honggang, et al. Icing wind tunnel investigation of helicopter rotor model in forward flight state[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(6): 929-936. doi: 10.13700/j.bh.1001-5965.2020.0703(in Chinese)
Citation: HUANG Mingqi, WANG Liangquan, YUAN Honggang, et al. Icing wind tunnel investigation of helicopter rotor model in forward flight state[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(6): 929-936. doi: 10.13700/j.bh.1001-5965.2020.0703(in Chinese)

Icing wind tunnel investigation of helicopter rotor model in forward flight state

doi: 10.13700/j.bh.1001-5965.2020.0703
Funds:

National Natural Science Foundation of China 11902335

CARDC Fundamental and Frontier Technology Research Fund PJD20180146

More Information
  • Corresponding author: WANG Liangquan, E-mail: wangliangquan@cardc.cn
  • Received Date: 21 Dec 2020
  • Accepted Date: 20 Feb 2021
  • Publish Date: 20 Jun 2022
  • To investigate the effect of ice accretion on helicopter rotors in forward flight in different flight states, a helicopter rotor icing test system was developed. A rotor model icing test was conducted in the 4.8 m× 3.2 m test section of the China Aerodynamics Research and Development Center icing wind tunnel. The effect of the rotational speed and initial thrust on the performance of a 2 m-diamter rotor model was examined. During the icing test, the control angle of the rotor was maintained constant, and the dynamic variation of the rotor thrust and torque was measured by a balance. The ice shape of the airfoil at typical span stations and of the entire blade was measured by two-dimensional ice cutting and three-dimensional scanning system, respectively. Test results showed that ice accretion occurred primarily on the blade leading edge and lower surface, and that icing increased rotor torque and power while decreasing rotor thrust. The rod end bearing of the pitch link could be stuck by accreted ice, resulting in a loss of rotor control.

     

  • loading
  • [1]
    CAO Y, CHEN K. Helicopter icing[J]. The Aeronautical Journal, 2010, 114(1152): 83-90. doi: 10.1017/S0001924000003559
    [2]
    中华人国共和国交通运输部. 中国民用航空规章第27部正常类旋翼航空器适航规定: CCAR-27-R2[S]. 北京: 中华人民共和国交通运输部, 2017.

    Ministry of Transport of the People's Republic of China. China civil aviation regulation No. 27: Airworthiness regulations for normal rotorcraft: CCAR-27-R2[S]. Beijing: Ministry of Transport of the People's Republic of China, 2017(in Chinese).
    [3]
    中华人民共和国交通运输部. 中国民用航空规章第29部运输类旋翼航空器适航规定: CCAR-29-R2[S]. 北京: 中华人民共和国交通运输部, 2017.

    Ministry of Transport of the People's Republic of China. China civil aviation regulation No. 29: Airworthiness regulations for transport rotorcraft: CCAR-29-R2[S]. Beijing: Ministry of Transport of the People's Republic of China, 2017(in Chinese).
    [4]
    TARQUINI S, ANTONINI C, AMIRFAZLI A, et al. Investigation of ice shedding properties of superhydrophobic coatings on helicopter blades[J]. Cold Regions Science and Technology, 2014, 100: 50-58. doi: 10.1016/j.coldregions.2013.12.009
    [5]
    PALACIOS J, WOLFE D, BAILEY M, et al. Ice testing of a centrifugally powered pneumatic deicing system for helicopter rotor blades[J]. Journal of the American Helicopter Society, 2015, 60(3): 1-12.
    [6]
    常士楠, 刘达经, 袁修干. 直升机旋翼桨叶防/除冰系统防护范围研究[J]. 航空动力学报, 2007, 22(3): 360-364. doi: 10.3969/j.issn.1000-8055.2007.03.005

    CHANG S N, LIU D J, YUAN X G. Research on protected range of the anti-icing/deicing system for helicopter rotor[J]. Journal of Aerospace Power, 2007, 22(3): 360-364(in Chinese). doi: 10.3969/j.issn.1000-8055.2007.03.005
    [7]
    洪海华, 刘伟光, 艾剑波, 等. 直升机的防除冰系统[J]. 直升机技术, 2010(1): 52-56. doi: 10.3969/j.issn.1673-1220.2010.01.010

    HONG H H, LIU W G, AI J B, et al. Anti-icing/deicing system of helicopter rotor[J]. Helicopter Technique, 2010(1): 52-56(in Chinese). doi: 10.3969/j.issn.1673-1220.2010.01.010
    [8]
    SHAW R, RICHTER G. The UH-1H helicopter icing flight test program-An overview[C]//23rd Aerospace Sciences Meeting. Reston: AIAA, 1985: 338.
    [9]
    钟国, 曹义华, 赵明. 直升机旋翼积冰的数值模拟[J]. 北京航空航天大学学报, 2012, 38(3): 330-334. https://bhxb.buaa.edu.cn/CN/Y2012/V/I3/330

    ZHONG G, CAO Y H, ZHAO M. Numerical simulation of ice accretion on helicopter rotor[J]. Journal of Beijing University of Aeronautics and Astronautics, 2012, 38(3): 330-334(in Chinese). https://bhxb.buaa.edu.cn/CN/Y2012/V/I3/330
    [10]
    KELLY D, HABASHI W G, QUARANTA G, et al. Ice accretion effects on helicopter rotor performance, via multibody and CFD approaches[J]. Journal of Aircraft, 2018, 55(3): 1165-1176. doi: 10.2514/1.C033962
    [11]
    WANG Z Z, ZHAO N, ZHU C L. Numerical simulation for three-dimensional rotor icing in forward flight[J]. Advances in Mechanical Engineering, 2018, 10(4): 168781401877240. doi: 10.1177/1687814018772404
    [12]
    CHEN X, ZHAO Q J, BARAKOS G. Numerical analysis of aerodynamic characteristics of iced rotor in forward flight[J]. AIAA Journal, 2018, 57(4): 1523-1537.
    [13]
    WANG L Q, XU G H, SHI Y J. Rotor airload and acoustics prediction based on CFD/CSD coupling method[J]. Transactions of Nanjing University of Aeronautics and Astronautics, 2018(2): 343-352.
    [14]
    李国知, 曹义华. 旋翼结冰对直升机飞行动力学特性的影响[J]. 航空学报, 2011, 32(2): 187-194.

    LI G Z, CAO Y H. Effect of rotor icing on helicopter flight dynamic characteristics[J]. Acta Aeronautica et Astronautica Sinica, 2011, 32(2): 187-194(in Chinese).
    [15]
    CHEN N L, JI H H, CAO G Z, et al. A three-dimensional mathematical model for simulating ice accretion on helicopter rotors[J]. Physics of Fluids, 2018, 30(8): 83602. doi: 10.1063/1.5041896
    [16]
    FLEMMING R J, HANKS K W, HANKS M L. US army UH-60M helicopter main rotor ice protection system[C]//2007 SAE Aircraft and Engine Icing International Conference, 2007: 1-16.
    [17]
    HOFF S C, VORST J, FLEMMING R J, et al. Icing certification of Korean utility helicopter KUH-1: NLR-TP-2017-098[R]. Amsterdam: NLR, 2017: 1-18.
    [18]
    FLEMMING R, ALLDRIDGE P, DOEPPNER R. Artificial icing tests of the S-92A helicopter in the McKinley Climatic Laboratory: AIAA 2004-737[R]. Reston: AIAA, 2004.
    [19]
    BRAGG M B, BROEREN A P, BLUMENTHAL L A. Iced-airfoil aerodynamics[J]. Progress in Aerospace Sciences, 2005, 41(5): 323-362. doi: 10.1016/j.paerosci.2005.07.001
    [20]
    LYNCH F T, KHODADOUST A. Effects of ice accretions on aircraft aerodynamics[J]. Progress in Aerospace Sciences, 2001, 37(8): 669-767. doi: 10.1016/S0376-0421(01)00018-5
    [21]
    张大林, 陈维建. 飞机机翼表面霜状冰结冰过程的数值模拟[J]. 航空动力学报, 2004, 19(1): 137-141. doi: 10.3969/j.issn.1000-8055.2004.01.025

    ZHANG D L, CHEN W J. Numerical simulation of rime ice accretion process on airfoil[J]. Journal of Aerospace Power, 2004, 19(1): 137-141(in Chinese). doi: 10.3969/j.issn.1000-8055.2004.01.025
    [22]
    CEBECI T, KAFYEKE F. Aircraft icing[J]. Annual Review of Fluid Mechanics, 2003, 35: 11-21. doi: 10.1146/annurev.fluid.35.101101.161217
    [23]
    桂业伟, 周志宏, 李颖晖, 等. 关于飞机结冰的多重安全边界问题[J]. 航空学报, 2017, 38(2): 520734.

    GUI Y W, ZHOU Z H, LI Y H, et al. Multiple safety boundaries protection on aircraft icing[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(2): 520734(in Chinese).
    [24]
    易贤. 飞机积冰的数值计算与积冰试验相似准则研究[D]. 绵阳: 中国空气动力研究与发展中心, 2007: 17-19.

    YI X. Numerical computation of aircraft icing and study on icing test scaling law[D]. Mianyang: China Aerodynamics Research and Development Center, 2007: 17-19(in Chinese).
    [25]
    FLEMMING R J, LEDNICER D A. Correlation of icing relationships with airfoil and rotorcraft icingdata[J]. Journal of Aircraft, 1986, 23(10): 737-743. doi: 10.2514/3.45374
    [26]
    MILLER T L, BOND T H. Icing research tunnel test of a model helicopter rotor: NASA-TM-101978[R]. Washington, D.C. : NASA, 1989: 1-12.
    [27]
    BRITTON R, BOND T, FLEMMING R. An overview of a model rotor icing test in the NASA Lewis icing research tunnel: AIAA-94-0716[R]. Reston: AIAA, 1994.
    [28]
    宋建宇, 吴晶峰, 邱长波, 等. 民用涡轴发动机进气系统结冰试验[J]. 航空动力学报, 2020, 35(5): 1089-1098.

    SONG J Y, WU J F, QIU C B, et al. Civil turboshaft engine induction system icing test[J]. Journal of Aerospace Power, 2020, 35(5): 1089-1098(in Chinese).
    [29]
    倪章松, 刘森云, 王桥, 等. 3 m×2 m结冰风洞试验技术研究进展[J]. 实验流体力学, 2019, 33(6): 46-53.

    NI Z S, LIU S Y, WANG Q, et al. Research progress of test technologies for 3 m×2 m icing wind tunnel[J]. Journal of Experiments in Fluid Mechanics, 2019, 33(6): 46-53(in Chinese).
    [30]
    章贵川, 彭先敏, 车兵辉, 等. 共轴刚性旋翼试验自动配平技术研究[J]. 南京航空航天大学学报, 2019, 51(2): 226-231.

    ZHANG G C, PENG X M, CHE B H, et al. Research on automatic trim technology of coaxial rigid rotor test[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2019, 51(2): 226-231(in Chinese).
    [31]
    易贤, 王斌, 李伟斌, 等. 飞机结冰冰形测量方法研究进展[J]. 航空学报, 2017, 38(2): 520711.

    YI X, WANG B, LI W B, et al. Research progress on ice shape measurement approaches for aircraft icing[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(2): 520711(in Chinese).
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(15)  / Tables(1)

    Article Metrics

    Article views(476) PDF downloads(123) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return