Volume 48 Issue 6
Jun.  2022
Turn off MathJax
Article Contents
ZHENG Weiming, XU Yang, LUO Delinet al. Distributed hierarchical formation-containment control of multiple quadrotor UAV systems[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(6): 1091-1105. doi: 10.13700/j.bh.1001-5965.2020.0725(in Chinese)
Citation: ZHENG Weiming, XU Yang, LUO Delinet al. Distributed hierarchical formation-containment control of multiple quadrotor UAV systems[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(6): 1091-1105. doi: 10.13700/j.bh.1001-5965.2020.0725(in Chinese)

Distributed hierarchical formation-containment control of multiple quadrotor UAV systems

doi: 10.13700/j.bh.1001-5965.2020.0725
Funds:

Jointly Supported by the Science and Technology on Avionics Integration Laboratory and the Aeronautical Science Foundation of China 20185568005

More Information
  • Corresponding author: LUO Delin, E-mail: luodelin1204@xmu.edu.cn
  • Received Date: 31 Dec 2020
  • Accepted Date: 06 Feb 2021
  • Publish Date: 20 Jun 2022
  • For the under-actuated quadrotor UAV swarm systems with multiple leaders and followers, a distributed hierarchical formation-containment control method is proposed. First, a hierarchical distributed finite-time sliding mode estimator is designed to achieve that each UAV can generate estimated position information that meets the control needs under the condition that only some leaders can obtain the desired trajectory. Then, considering the research object is an under-actuated six-degree-of-freedom quadrotor UAV model, a hierarchical control method of the UAV position layer and the attitude layer is proposed, which realizes the tracking control of the generated estimated position. This method adopts a high-order derivative approximation algorithm to prevent differential explosions in the process of solving the desired angular velocity. The given method can realize the effective formation-containment under the condition of satisfying the stable convergence of attitude. Finally, the accuracy and effectiveness of the proposed method are verified through numerical simulation.

     

  • loading
  • [1]
    韩亮, 任章, 董希旺, 等. 多无人机协同控制方法及应用研究[J]. 导航定位与授时, 2018, 5(4): 1-7. https://www.cnki.com.cn/Article/CJFDTOTAL-DWSS201804002.htm

    HAN L, REN Z, DONG X W, et al. Research on cooperative control method and application for multiple unmanned aerial vehicles[J]. Navigation Positioning and Timing, 2018, 5(4): 1-7(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-DWSS201804002.htm
    [2]
    马思迁, 董朝阳, 马鸣宇, 等. 基于自适应通信拓扑四旋翼无人机编队重构控制[J]. 北京航空航天大学学报, 2018, 44(4): 841-850. doi: 10.13700/j.bh.1001-5965.2017.0281

    MA S Q, DONG C Y, MA M Y, et al. Formation reconfiguration control of quadrotor UAVs based on adaptive communication topology[J]. Journal of Beijing University of Aeronautics and Astronautics, 2018, 44(4): 841-850(in Chinese). doi: 10.13700/j.bh.1001-5965.2017.0281
    [3]
    徐扬, 罗德林, 周路鹏, 等. 基于增益矩阵的二阶集群系统鲁棒分布式立体编队控制[J]. 中国科学: 技术科学, 2020, 50(4): 461-474. https://www.cnki.com.cn/Article/CJFDTOTAL-JEXK202004008.htm

    XU Y, LUO D L, ZHOU L P, et al. A gain matrix approach for robust distributed 3D formation control with second order swarm systems[J]. Scientia Sinica: Technologica, 2020, 50(4): 461-474(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JEXK202004008.htm
    [4]
    任章, 郭栋, 董希旺, 等. 飞行器集群协同制导控制方法及应用研究[J]. 导航定位与授时, 2019, 6(5): 1-9. https://www.cnki.com.cn/Article/CJFDTOTAL-DWSS201905003.htm

    REN Z, GUO D, DONG X W, et al. Research on the cooperative guidance and control method and application for aerial vehicle swarm systems[J]. Navigation Positioning and Timing, 2019, 6(5): 1-9(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-DWSS201905003.htm
    [5]
    陈杰, 辛斌. 有人/无人系统自主协同的关键科学问题[J]. 中国科学: 信息科学, 2018, 48(9): 1270-1274. https://www.cnki.com.cn/Article/CJFDTOTAL-PZKX201809012.htm

    CHEN J, XIN B. Key scientific problems in the autonomous cooperation of manned-unmanned systems[J]. Scientia Sinica: Informationis, 2018, 48(9): 1270-1274(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-PZKX201809012.htm
    [6]
    段海滨, 张岱峰, 范彦铭, 等. 从狼群智能到无人机集群协同决策[J]. 中国科学: 信息科学, 2019, 49(1): 112-118. https://www.cnki.com.cn/Article/CJFDTOTAL-PZKX201901008.htm

    DUAN H B, ZHANG D F, FAN Y M, et al. From wolf pack intelligence to UAV swarm cooperative decisionmaking[J]. Scientia Sinica: Informationis, 2019, 49(1): 112-118(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-PZKX201901008.htm
    [7]
    LUO D L, SHAO J, XU Y, et al. Coevolution pigeon-inspired optimization with cooperation-competition mechanism for multi-UAV cooperative region search[J]. Applied Sciences, 2019, 9(5): 827. doi: 10.3390/app9050827
    [8]
    周绍磊, 祁亚辉, 张雷, 等. 切换拓扑下无人机集群系统时变编队控制[J]. 航空学报, 2017, 38(4): 320452. https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201704025.htm

    ZHOU S L, QI Y H, ZHANG L, et al. Time-varying formation control of UAV swarm systems with switching topologies[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(4): 320452(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201704025.htm
    [9]
    胡春鹤, 陈宗基. 基于Helly定理的多智能体最短时间一致性[J]. 北京航空航天大学学报, 2015, 41(9): 1701-1707. doi: 10.13700/j.bh.1001-5965.2014.0676

    HU C H, CHEN Z J. Helly-theorem-based time-optimal consensus for multi-agent systems[J]. Journal of Beijing University of Aeronautics and Astronautics, 2015, 41(9): 1701-1707(in Chinese). doi: 10.13700/j.bh.1001-5965.2014.0676
    [10]
    REN W. Consensus strategies for cooperative control of vehicle formations[J]. IET Control Theory & Applications, 2007, 1(2): 505-512.
    [11]
    姚辉, 席建祥, 王成, 等. 二阶多智能体系统自抗扰编队跟踪与避撞控制[J]. 北京航空航天大学学报, 2020, 46(5): 960-977. doi: 10.13700/j.bh.1001-5965.2019.0359

    YAO H, XI J X, WANG C, et al. Active disturbance rejection based formation tracking and collision avoidance control for second-order multi-agent system[J]. Journal of Beijing University of Aeronautics and Astronautics, 2020, 46(5): 960-977(in Chinese). doi: 10.13700/j.bh.1001-5965.2019.0359
    [12]
    陈亮名. 考虑约束的多智能体Euler-Lagrange系统编队-包含控制[D]. 哈尔滨: 哈尔滨工业大学, 2019.

    CHEN L M. Formation-containment control of multi-agent Euler-Lagrange systems with constraints[D]. Harbin: Harbin Institute of Technology, 2019(in Chinese).
    [13]
    DONG X W. Formation and containment control for high-order linear swarm systems[M]. Berlin: Springer, 2016.
    [14]
    LI C J, CHEN L M, GUO Y N, et al. Formation-containment control for networked Euler-Lagrange systems with input saturation[J]. Nonlinear Dynamics, 2018, 91(2): 1307-1320. doi: 10.1007/s11071-017-3946-7
    [15]
    CHEN L M, LI C J, MEI J, et al. Adaptive cooperative formation-containment control for networked Euler-Lagrange systems without using relative velocity information[J]. IET Control Theory & Applications, 2017, 11(9): 1450-1458.
    [16]
    DONG X W, YU B C, SHI Z Y, et al. Time-varying formation control for unmanned aerial vehicles: Theories and applications[J]. IEEE Transactions on Control Systems Technology, 2015, 23(1): 340-348. doi: 10.1109/TCST.2014.2314460
    [17]
    DONG X W, ZHOU Y, REN Z, et al. Time-varying formation tracking for second-order multi-agent systems subjected to switching topologies with application to quadrotor formation flying[J]. IEEE Transactions on Industrial Electronics, 2017, 64(6): 5014-5024. doi: 10.1109/TIE.2016.2593656
    [18]
    ZHOU Y, DONG X W, LU G, et al. Time-varying formation control for unmanned aerial vehicles with switching interaction topologies[C]//2014 International Conference on Unmanned Aircraft Systems (ICUAS). Piscataway: IEEE Press, 2014: 1203-1209.
    [19]
    ZHANG W Q, DONG C Y, RAN M P, et al. Fully distributed time-varying formation tracking control for multiple quadrotor vehicles via finite-time convergent extended state observer[J]. Chinese Journal of Aeronautics, 2020, 33(11): 2907-2920. doi: 10.1016/j.cja.2020.03.004
    [20]
    XU Y, ZHAO S Y, LUO D L, et al. Affine formation maneuver control of high-order multi-agent systems over directed networks[J]. Automatica, 2020, 118: 109004. doi: 10.1016/j.automatica.2020.109004
    [21]
    ZHAO S Y. Affine formation maneuver control of multiagent systems[J]. IEEE Transactions on Automatic Control, 2018, 63(12): 4140-4155. doi: 10.1109/TAC.2018.2798805
    [22]
    SHAO X L, TIAN B, YANG W. Fixed-time trajectory following for quadrotors via output feedback[J]. ISA Transactions, 2021, 110: 213-224. doi: 10.1016/j.isatra.2020.10.039
    [23]
    LI D Y, ZHANG W, HE W, et al. Two-layer distributed formation-containment control of multiple Euler-Lagrange systems by output feedback[J]. IEEE Transactions on Cybernetics, 2019, 49(2): 675-687. doi: 10.1109/TCYB.2017.2786318
    [24]
    YU Y S, DING X L. A global tracking controller for underactuated aerial vehicles: Design, analysis, and experimental tests on quadrotor[J]. IEEE/ASME Transactions on Mechatronics, 2016, 21(5): 2499-2511. doi: 10.1109/TMECH.2016.2558678
    [25]
    MENG Z Y, REN W, YOU Z. Distributed finite-time attitude containment control for multiple rigid bodies[J]. Automatica, 2010, 46(12): 2092-2099. doi: 10.1016/j.automatica.2010.09.005
    [26]
    SHUSTER M D. A survey of attitude representations[J]. Journal of Astronautical Sciences, 1993, 41(4): 439-517.
    [27]
    HORN R A, JOHNSON C R. Matrix analysis[M]. Cambridge: Cambridge University Press, 2012.
    [28]
    BHAT S P, BERNSTEIN D S. Finite-time stability of continuous autonomous systems[J]. SIAM Journal on Control and Optimization, 2000, 38(3): 751-766. doi: 10.1137/S0363012997321358
    [29]
    ROBERTS A, TAYEBI A. Adaptive position tracking of VTOL UAVs[J]. IEEE Transactions on Robotics, 2011, 27(1): 129-142. doi: 10.1109/TRO.2010.2092870
    [30]
    ZHU B, HUO W. Nonlinear control for a model-scaled helicopter with constraints on rotor thrust and fuselage attitude[J]. Acta Automatica Sinica, 2014, 40(11): 2654-2664. doi: 10.1016/S1874-1029(14)60411-0
    [31]
    LI C Y, JING W X, GAO C S. Adaptive backstepping-based flight control system using integral filters[J]. Aerospace Science and Technology, 2009, 13(2-3): 105-113. doi: 10.1016/j.ast.2008.05.002
    [32]
    XU Y, LUO D L, LI D Y, et al. Target-enclosing affine formation control of two-layer networked spacecraft with collision avoidance[J]. Chinese Journal of Aeronautics, 2019, 32(12): 2679-2693. doi: 10.1016/j.cja.2019.04.016
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(12)  / Tables(1)

    Article Metrics

    Article views(514) PDF downloads(85) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return