Volume 48 Issue 6
Jun.  2022
Turn off MathJax
Article Contents
ZHOU Yong, XUE Bin, GUO Yunxin, et al. An algorithm for generating geometric models of microscopic specimens of PVC foam based on μCT images[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(6): 968-978. doi: 10.13700/j.bh.1001-5965.2020.0726(in Chinese)
Citation: ZHOU Yong, XUE Bin, GUO Yunxin, et al. An algorithm for generating geometric models of microscopic specimens of PVC foam based on μCT images[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(6): 968-978. doi: 10.13700/j.bh.1001-5965.2020.0726(in Chinese)

An algorithm for generating geometric models of microscopic specimens of PVC foam based on μCT images

doi: 10.13700/j.bh.1001-5965.2020.0726
Funds:

National Key R & D Program of China 2016YFB1200601-16

More Information
  • Corresponding author: WANG Renpeng, E-mail: renpengwang@126.com
  • Received Date: 31 Dec 2020
  • Accepted Date: 07 Mar 2021
  • Publish Date: 20 Jun 2022
  • In numerical simulation of foam microstructure, the geometric characteristics and arrangement of foam cavities have an important influence on calculation efficiency and calculation results. We propose a new algorithm, based on the advancing surface search geometric construction algorithm and the Laguerre partition algorithm, to generate the geometric model of the PVC foam microscopic specimen. First, reconstruct the authentic geometric model of the foam from μCT scan image, and measure the geometric characteristics of the foam cavity and the volume distribution pattern. Then, convert the measured foam cavity volume into a sphere, and put it into the space through the advancing surface search geometric construction algorithm. Finally, divide the space sphere into regions by means of Laguerre division, and assign wall thickness parameters to form a geometric model of the microstructure. The established model is in good agreement with the actual material in terms of micro-geometric characteristics.

     

  • loading
  • [1]
    CHEN Y M, DAS R, BATTLEY M. Effects of cell size and cell wall thickness variations on the stiffness of closed-cell foams[J]. International Journal of Solids and Structures, 2015, 52: 150-164. doi: 10.1016/j.ijsolstr.2014.09.022
    [2]
    GIBSON L J, ASHBY M F. Cellular solids[M]. Cambridge: Cambridge University Press, 1997.
    [3]
    MILLS N J, ZHU H X. The high strain compression of closed-cell polymer foams[J]. Journal of the Mechanics and Physics of Solids, 1999, 47(3): 669-695. doi: 10.1016/S0022-5096(98)00007-6
    [4]
    WEAIRE D, PHELAN R. A counter-example to Kelvin's conjecture on minimal surfaces[J]. Philosophical Magazine Letters, 1994, 69(2): 107-110. doi: 10.1080/09500839408241577
    [5]
    WISMANS J G F, GOVAERT L E, VAN DOMMELEN J A W. X-ray computed tomography-based modeling of polymeric foams: The effect of finite element model size on the large strain response[J]. Journal of Polymer Science Part B: Polymer Physics, 2010, 48(13): 1526-1534. doi: 10.1002/polb.22055
    [6]
    VESENJAK M, VEYHL C, FIEDLER T. Analysis of anisotropy and strain rate sensitivity of open-cell metal foam[J]. Materials Science and Engineering: A, 2012, 541: 105-109. doi: 10.1016/j.msea.2012.02.010
    [7]
    SUN Y L, LOWE T, MCDONALD S A, et al. In situ investigation and image-based modelling of aluminium foam compression using micro X-ray computed tomography[M]//LETA F R. Visual computing. Belin: Springer, 2014: 189-197.
    [8]
    SUN Y L, LI Q M, LOWE T, et al. Investigation of strain-rate effect on the compressive behaviour of closed-cell aluminium foam by 3D image-based modelling[J]. Materials & Design, 2016, 89: 215-224.
    [9]
    KIM S H, CHUNG H J, RHEE K Y. Numerical analysis on the compressive behaviors of aluminum foam material using computed tomography imaging[J]. Advanced Materials Research, 2010, 123-125: 567-570.
    [10]
    JEON I, ASAHINA T, KANG K J, et al. Finite element simulation of the plastic collapse of closed-cell aluminum foams with X-ray computed tomography[J]. Mechanics of Materials, 2010, 42(3): 227-236. doi: 10.1016/j.mechmat.2010.01.003
    [11]
    HUANG R X, LI P F, LIU T. X-ray microtomography and finite element modelling of compressive failure mechanism in cenosphere epoxy syntactic foams[J]. Composite Structures, 2016, 140: 157-165. doi: 10.1016/j.compstruct.2015.12.040
    [12]
    DAPHALAPURKAR N P, HANAN J C, PHELPS N B, et al. Tomography and simulation of microstructure evolution of a closed-cell polymer foam in compression[J]. Mechanics of Advanced Materials and Structures, 2008, 15(8): 594-611. doi: 10.1080/15376490802470523
    [13]
    CATY O, MAIRE E, YOUSSEF S, et al. Modeling the properties of closed-cell cellular materials from tomography images using finite shell elements[J]. Acta Materialia, 2008, 56(19): 5524-5534. doi: 10.1016/j.actamat.2008.07.023
    [14]
    李侯贞强, 张亚栋, 张锦华, 等. 基于CT的泡沫铝三维细观模型重建及应用[J]. 北京航空航天大学学报, 2018, 44(1): 160-168. doi: 10.13700/j.bh.1001-5965.2016.0959

    LI H Z Q, ZHANG Y D, ZHANG J H, et al. Reconstruction and application of three-dimensional mesoscopic model of aluminum foam based on CT[J]. Journal of Beijing University of Aeronautics and Astronautics, 2018, 44(1): 160-168(in Chinese). doi: 10.13700/j.bh.1001-5965.2016.0959
    [15]
    LI K, GAO X L, SUBHASH G. Effects of cell shape and strut cross-sectional area variations on the elastic properties of three-dimensional open-cell foams[J]. Journal of the Mechanics and Physics of Solids, 2006, 54(4): 783-806. doi: 10.1016/j.jmps.2005.10.007
    [16]
    SONG Y Z, WANG Z H, ZHAO L M, et al. Dynamic crushing behavior of 3D closed-cell foams based on Voronoi random model[J]. Materials & Design, 2010, 31(9): 4281-4289.
    [17]
    ZHU H X, HOBDELL J R, WINDLE A H. Effects of cell irregularity on the elastic properties of open-cell foams[J]. Acta Materialia, 2000, 48(20): 4893-4900. doi: 10.1016/S1359-6454(00)00282-2
    [18]
    ZHU H X, WINDLE A H. Effects of cell irregularity on the high strain compression of open-cell foams[J]. Acta Materialia, 2002, 50(5): 1041-1052. doi: 10.1016/S1359-6454(01)00402-5
    [19]
    ZHU W Q, BLAL N, CUNSOLO S, et al. Effective elastic behavior of irregular closed-cell foams[J]. Materials, 2018, 11(11): 2100. doi: 10.3390/ma11112100
    [20]
    RIBEIRO-AYEH S. Finite element modelling of the mechanics of solid foam materials[D]. Karlstad: Karlstad University, 2005.
    [21]
    REDENBACH C, SHKLYAR I, ANDRÄ H. Laguerre tessellations for elastic stiffness simulations of closed foams with strongly varying cell sizes[J]. International Journal of Engineering Science, 2012, 50(1): 70-78. doi: 10.1016/j.ijengsci.2011.09.002
    [22]
    GHAZI A, BERKE P, KAMEL K E M, et al. Multiscale computational modelling of closed cell metallic foams with detailed microstructural morphological control[J]. International Journal of Engineering Science, 2019, 143: 92-114. doi: 10.1016/j.ijengsci.2019.06.012
    [23]
    MATZKE E B. The three-dimensional shape of bubbles in foam—An analysis of the rôle of surface forces in three-dimensional cell shape determination[J]. American Journal of Botany, 1946, 33(1): 58-80. doi: 10.1002/j.1537-2197.1946.tb10347.x
    [24]
    李勇俊, 季顺迎. 基于球形颗粒几何排列的离散元试样高效生成方法[J]. 应用力学学报, 2020, 37(2): 469-476. https://www.cnki.com.cn/Article/CJFDTOTAL-YYLX202002001.htm

    LI Y J, JI S Y. Construction approach of DEM samples with high efficiency based on geometrical packing of spherical particles[J]. Chinese Journal of Applied Mechanics, 2020, 37(2): 469-476(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-YYLX202002001.htm
    [25]
    VALERA R R, MORALES I P, VANMAERCKE S, et al. Modified algorithm for generating high volume fraction sphere packings[J]. Computational Particle Mechanics, 2015, 2(2): 161-172. doi: 10.1007/s40571-015-0045-8
    [26]
    RYCROFT C H. Voro+ +: A three-dimensional voronoi cell library in C+ +[J]. Chaos, 2009, 19(4): 041111. doi: 10.1063/1.3215722
    [27]
    LIU Y, RAHIMIDEHGOLAN F, ALTENHOF W. Anisotropic compressive behavior of rigid PVC foam at strain rates up to 200 s-1[J]. Polymer Testing, 2020, 91: 106836. doi: 10.1016/j.polymertesting.2020.106836
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(15)  / Tables(1)

    Article Metrics

    Article views(398) PDF downloads(16) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return