Volume 48 Issue 7
Jul.  2022
Turn off MathJax
Article Contents
WU Tailong, WANG Yue. Orbital dynamics of rings of small bodies[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(7): 1287-1296. doi: 10.13700/j.bh.1001-5965.2021.0003(in Chinese)
Citation: WU Tailong, WANG Yue. Orbital dynamics of rings of small bodies[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(7): 1287-1296. doi: 10.13700/j.bh.1001-5965.2021.0003(in Chinese)

Orbital dynamics of rings of small bodies

doi: 10.13700/j.bh.1001-5965.2021.0003
Funds:

National Natural Science Foundation of China 11872007

the Fundamental Research Funds for the Central Universities 

More Information
  • Corresponding author: WANG Yue, E-mail: ywang@buaa.edu.cn
  • Received Date: 05 Jan 2021
  • Accepted Date: 28 Mar 2021
  • Publish Date: 26 Apr 2021
  • With the development of astronomical observations, it has been found that, not only Saturn, Jupiter and other giant planets, but also some small bodies are surrounded by rings. Focussing on rings of the Centaur 10199 Chariklo, we study the orbital dynamics of particles in the gravitational field of Chariklo, and analyze the impacts of equatorial ellipticity and rotation of Chariklo on the orbital motion of particles. The first kind of periodic orbits and 1:3 resonant periodic orbits are obtained by using KAM torus iteration on the Poincaré sections. The relationship between the position of rings and the mean motion resonances are revealed by analyzing the properties of the periodic orbits. The results show that, the particles in the inner ring of Chariklo are most likely associated with the first kind of periodic orbits and their quasi-periodic orbits, but are also likely associated with the 1:3 resonant periodic orbits and their quasi-periodic orbits. The particles in the outer ring of Chariklo are not associated with the 1:3 resonant periodic orbits, but are associated with the first periodic orbits and their quasi-periodic orbits.

     

  • loading
  • [1]
    BRAGA-RIBAS F, SICARDY B, ORTIZ J L, et al. A ring system detected around the Centaur (10199) Chariklo[J]. Nature, 2014, 508(7494): 72-75. doi: 10.1038/nature13155
    [2]
    KONDRATYEV B P. Dynamics of Centaur Chariklo and evolution of its rings[J]. Astrophysics and Space Science, 2016, 361(12): 389. doi: 10.1007/s10509-016-2975-x
    [3]
    ORTIZ J L, SANTOS-SANZ P, SICARDY B, et al. The size, shape, density and ring of the dwarf planet Haumea from a stellar occultation[J]. Nature, 2017, 550(7675): 219-223. doi: 10.1038/nature24051
    [4]
    ORTIZ J L, DUFFARD R, PINILLA-ALONSO N, et al. Possible ring material around Centaur (2060) Chiron[J]. Astronomy & Astrophysics, 2015, 576: A18.
    [5]
    HYODO R, CHARNOZ S, GENDA H, et al. Formation of Centaurs' rings through their partial tidal disruption during planetary encounters[J]. Astrophysical Journal, 2016, 828(1): L8. doi: 10.3847/2041-8205/828/1/L8
    [6]
    PAN M, WU Y. On the mass and origin of Chariklo's rings[J]. Astrophysical Journal, 2016, 821(1): 18. doi: 10.3847/0004-637X/821/1/18
    [7]
    BÉRARD D, SICARDY B, CAMARGO J I B, et al. The structure of Chariklo's rings from stellar occultations[J]. The Astronomical Journal, 2017, 154(4): 144. doi: 10.3847/1538-3881/aa830d
    [8]
    GUPTA A, NADKARNI-GHOSH S, SHARMA I. Rings of non-spherical, axisymmetric bodies[J]. Icarus, 2018, 299: 97-116. doi: 10.1016/j.icarus.2017.07.012
    [9]
    WINTER O C, BORDERES-MOTTA G, RIBEIRO T. On the location of the ring around the dwarf planet Haumea[J]. Monthly Notices of the Royal Astronomical Society, 2019, 484(3): 3765-3771.
    [10]
    SICARDY B. Resonances in nonaxisymmetric gravitational potentials[J]. The Astronomical Journal, 2020, 159(3): 102.
    [11]
    SICARDY B, LEIVA R, RENNER S, et al. Ring dynamics around non-axisymmetric bodies with application to Chariklo and Haumea[J]. Nature Astronomy, 2018, 3(2): 146-153.
    [12]
    李俊峰, 宝音贺西, 蒋方华. 深空探测动力学与控制[M]. 北京: 清华大学出版社, 2014: 307-315.

    LI J F, BAOYIN H X, JIANG F H. Dynamics and control of interplanatory flight[M]. Beijing: Tsinghua University Press, 2014: 307-315(in Chinese).
    [13]
    TUCKER W. Computing accurate Poincaré maps[J]. Physica D Nonlinear Phenomena, 2002, 171(3): 127-137.
    [14]
    MOTTA G B, WINTER O C. Poincaré surfaces of section around a 3-D irregular body: The case of asteroid 4179 Toutatis[J]. Monthly Notices of the Royal Astronomical Society, 2017, 474(2): 2452-2466.
    [15]
    吴晓杰, 王悦, 徐世杰. 火卫一周期准卫星轨道及入轨分析[J]. 北京航空航天大学学报, 2020, 46(6): 1133-1141. doi: 10.13700/j.bh.1001-5965.2019.0391

    WU X J, WANG Y, XU S J. Periodic quasi-satellite orbits around Phobos and their injections[J]. Journal of Beijing University of Aeronautics and Astronautics, 2020, 46(6): 1133-1141(in Chinese). doi: 10.13700/j.bh.1001-5965.2019.0391
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(14)  / Tables(1)

    Article Metrics

    Article views(333) PDF downloads(50) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return