Volume 48 Issue 7
Jul.  2022
Turn off MathJax
Article Contents
LIN Miao, MENG Gang, JU Yongjian, et al. Design and optimization of large-stroke decoupled three-translational micro-positioning platform[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(7): 1252-1262. doi: 10.13700/j.bh.1001-5965.2021.0007(in Chinese)
Citation: LIN Miao, MENG Gang, JU Yongjian, et al. Design and optimization of large-stroke decoupled three-translational micro-positioning platform[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(7): 1252-1262. doi: 10.13700/j.bh.1001-5965.2021.0007(in Chinese)

Design and optimization of large-stroke decoupled three-translational micro-positioning platform

doi: 10.13700/j.bh.1001-5965.2021.0007
Funds:

The Six Talent Peaks Project in Jiangsu Province ZBZZ-012

111 Project B18027

Postgraduate Research & Practice Innovation Program of Jiangsu Province, China JSCX20_0760

Postgraduate Research & Practice Innovation Program of Jiangnan University, China JNSJ19_005

More Information
  • Corresponding author: CAO Yi, E-mail: caoyi@jiangnan.edu.cn
  • Received Date: 07 Jan 2021
  • Accepted Date: 10 Feb 2021
  • Publish Date: 11 Mar 2021
  • To design large-stroke three-translational micro-positioning platforms with excellent decoupling characteristics, a new 2T3R type motion pair was proposed. The structure of three-translational micro-positioning platform was designed based on the 2T3R type motion pair. The theoretical models of force-displacement relationship and lost motion were established by nonlinear model method, the theoretical models of platform natural frequency were established by Lagrange equation. The goal programming method was used to optimize parameters of the micro-positioning platform. The correctness of the above theoretical model was verified by finite element simulation. According to the theoretical calculation and simulation results, the first-order natural frequency of the platform is 51.27 Hz. the lost motions in x and z directions are less than 0.67% and 0.20% in 1 mm motion stroke, and the input and output motions are completely decoupled. Results show that the structure design of motion pair and platform is effective, and the optimization model is feasible.

     

  • loading
  • [1]
    于靖军, 郝广波, 陈贵敏, 等. 柔性机构及其应用研究进展[J]. 机械工程学报, 2015, 51(13): 53-68. https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201513006.htm

    YU J J, HAO G B, CHEN G M, et al. State-of-art of compliant mechanisms and their applications[J]. Journal of Mechanical Engineering, 2015, 51(13): 53-68(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201513006.htm
    [2]
    周睿, 周辉, 桂和利, 等. 基于柔性铰链的二自由度微动平台分析及优化[J]. 北京航空航天大学学报, 2018, 44(9): 199-207. doi: 10.13700/j.bh.1001-5965.2017.0706

    ZHOU R, ZHOU H, GUI H L, et al. Analysis and optimization of 2-DoF micro-positioning stage based on flexible hinges[J]. Journal of Beijing University of Aeronautics and Astronautics, 2018, 44(9): 199-207(in Chinese) doi: 10.13700/j.bh.1001-5965.2017.0706
    [3]
    李杨民, 汤晖, 徐青松, 等. 面向生物医学应用的微操作机器人技术发展态势[J]. 机械工程学报, 2011, 47(23): 1-13. https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201123002.htm

    LI Y M, TANG H, XU Q S, et al. Development status of micromanipulator technology for biomedical applications[J]. Journal of Mechanical Engineering, 2011, 47(23): 1-13(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201123002.htm
    [4]
    ÖZKALE B, PARREIRA R, BEKDEMIR A, et al. Modular soft robotic micro-devices for dexterous biomanipulation[J]. Lab on a Chip, 2019, 19(5): 778-788. doi: 10.1039/C8LC01200H
    [5]
    王保兴, 孟刚, 林苗, 等. 3-PPP型柔性并联微定位平台的设计与分析[J]. 北京航空航天大学学报, 2020, 46(4): 798-807. doi: 10.13700/j.bh.1001-5965.2019.0286

    WANG B X, MENG G, LIN M, et al. Design and analysis of a 3-PPP compliant parallel micro-positioning stage[J]. Journal of Beijing University of Aeronautics and Astronautics, 2020, 46(4): 798-807(in Chinese). doi: 10.13700/j.bh.1001-5965.2019.0286
    [6]
    ZHU Z, TO S, ZHU W L, et al. Optimum design of a piezo-actuated triaxial compliant mechanism for nanocutting[J]. IEEE Transactions on Industrial Electronics, 2018, 65(8): 6362-6371. doi: 10.1109/TIE.2017.2787592
    [7]
    WATANABE S, ANDO T. High-speed XYZ nano-positioner for scanning ion conductance microscopy[J]. Applied Physics Letters, 2017, 111(11): 113106. doi: 10.1063/1.4993296
    [8]
    AWTAR S, USTICK J, SEN S. An XYZ parallel kinematic flexure mechanism with geometrically decoupled degrees of freedom[C]//Proceedings of the ASME International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, 2011: 119-126.
    [9]
    LI H Y, HAO G B, KAVANAGH R C. A new XYZ compliant parallel mechanism for micro-/nano-manipulation: Design and analysis[J]. Micromachines, 2016, 7(2): 23. doi: 10.3390/mi7020023
    [10]
    HAO G B, LI H Y. Design of 3-legged XYZ compliant parallel manipulators with minimized parasitic rotations[J]. Robotica, 2015, 33(4): 787-806. doi: 10.1017/S0263574714000575
    [11]
    HOPKINS J B, CULPEPPER M L. Synthesis of multi-degree of freedom, parallel flexure system concepts via freedom and constraint topology (FACT). Part I: Principles[J]. Precision Engineering, 2010, 34(2): 259-270. doi: 10.1016/j.precisioneng.2009.06.008
    [12]
    HOPKINS J B, CULPEPPER M L. Synthesis of multi-degree of freedom, parallel flexure system concepts via freedom and constraint topology (FACT). Part Ⅱ: Principles[J]. Precision Engineering, 2010, 34(2): 271-278. doi: 10.1016/j.precisioneng.2009.06.007
    [13]
    XU Q S. A totally decoupled piezo-driven XYZ flexure parallel micropositioning stage for micro/nanomanipulation[J]. IEEE Transactions on Automation Science and Engineering, 2011, 8(2): 265-279.
    [14]
    李海洋, 郝广波, 于靖军, 等. 空间平动柔性并联机构的系统设计方法研究[J]. 机械工程学报, 2018, 54(13): 57-65. https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201813006.htm

    LI H Y, HAO G B, YU J J. et al. Systematic approach to the design of spatial translational compliant parallel mechanisms[J]. Journal of Mechanical Engineering, 2018, 54(13): 57-65(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201813006.htm
    [15]
    ZHANG X Z, XU Q S. Design, fabrication and testing of a novel symmetrical 3-DOF large-stroke parallel micro/nano-positioning stage[J]. Robotics and Computer-Integrated Manufacturing, 2018, 54: 162-172. doi: 10.1016/j.rcim.2017.11.006
    [16]
    HAO G B, KONG X W, MENG Q L. Design and modelling of spatial compliant parallel mechanisms for large range of translation[C]//Proceedings of the ASME International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, 2010, 2: 329-340.
    [17]
    曹毅, 王保兴, 孟刚, 等. 大行程三平动柔性微定位平台的设计分析及优化[J]. 机械工程学报, 2020, 56(17): 71-81. https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB202017008.htm

    CAO Y, WANG B X, MENG G, et al. Design analysis and optimization of large range spatial translational compliant micro-positioning stage[J]. Journal of Mechanical Engineering, 2020, 56(17): 71-81(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB202017008.htm
    [18]
    曹毅, 孟刚, 居勇健, 等. 基于2T3R型柔性运动副的微定位平台: CN111785318A[P]. 2020-10-16.

    CAO Y, MENG G, JU Y J, et al. Micro-positioning stage based on 2T3R compliant kinematic pair: CN111785318A[P]. 2020-10-16(in Chinese).
    [19]
    杨志军, 白有盾, 陈新, 等. 基于应力刚化效应的动态特性可调微动平台设计新方法[J]. 机械工程学报, 2015, 51(23): 153-159. https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201523019.htm

    YANG Z J, BAI Y D, CHEN X, et al. A new design method of dynamic characteristics adjustable micro motion stage based on tension stiffening[J]. Journal of Mechanical Engineering, 2015, 51(23): 153-159(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201523019.htm
    [20]
    YU J J, LI S Z, SU H J, et al. Screw theory based methodology for the deterministic type synthesis of flexure mechanisms[J]. Journal of Mechanisms and Robotics, 2011, 3(3): 1194-1204.
    [21]
    MA F L, CHEN G M. Bi-BCM: A closed-form solution for fixed-guided beams in compliant mechanisms[J]. Journal of Mechanisms and Robotics, 2017, 9(1): 014501.
    [22]
    HERPE X, WALKER R, DUNNIGAN M, et al. On a simplified nonlinear analytical model for the characterization and design optimization of a compliant XY micro-motion stage[J]. Robotics and Computer-Integrated Manufacturing, 2018, 49: 66-76.
    [23]
    HOWELL L L. Compliant mechanisms[M]. New York: John Wiley and Sons, 2001: 302.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(19)  / Tables(4)

    Article Metrics

    Article views(368) PDF downloads(32) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return