Volume 48 Issue 7
Jul.  2022
Turn off MathJax
Article Contents
BAI Luo, ZHANG Hongli, WANG Conget al. Target tracking algorithm based on efficient attention and context awareness[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(7): 1222-1232. doi: 10.13700/j.bh.1001-5965.2021.0013(in Chinese)
Citation: BAI Luo, ZHANG Hongli, WANG Conget al. Target tracking algorithm based on efficient attention and context awareness[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(7): 1222-1232. doi: 10.13700/j.bh.1001-5965.2021.0013(in Chinese)

Target tracking algorithm based on efficient attention and context awareness

doi: 10.13700/j.bh.1001-5965.2021.0013
Funds:

National Natural Science Foundation of China 51767022

National Natural Science Foundation of China 51967019

More Information
  • Corresponding author: ZHANG Hongli, E-mail: 1606829274@qq.com
  • Received Date: 11 Jan 2021
  • Accepted Date: 22 Jan 2021
  • Publish Date: 10 Mar 2021
  • The matching-based Siamese network algorithm often lacks the overall perception of a target, which easily leads to inaccurate target state estimation and target missing in complex environments. Therefore, this paper designs two lightweight modules on the basis of the twin network to achieve more accurate and robust target tracking. An efficient channel attention module is embedded into the backbone network after its construction for feature extraction. Efficient extraction of target features and enhanced differential representation are achieved. so that the network pays more attention to the target information. The features after template matching pass a local context awareness module, thus enhancing the network's overall perception of the target to deal with the complex and changeable environment in the tracking process. The Anchor-free state estimation strategy is used to achieve accurate estimation of the target. Experimental results show that on the datasets OTB100, VOT2016 and VOT2018, SiamCC algorithm outperforms DaSiamRPN algorithms and ATOM algorithm, with the tracking speed reaching 85 frame/s.

     

  • loading
  • [1]
    孟琭, 杨旭. 目标跟踪算法综述[J]. 自动化学报, 2019, 45(7): 1244-1260. https://www.cnki.com.cn/Article/CJFDTOTAL-MOTO201907003.htm

    MENG L, YANG X. A survey of object tracking algorithms[J]. Acta Automatica Sinica, 2019, 45(7): 1244-1260(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-MOTO201907003.htm
    [2]
    BOLME D S, BEVERIDEG J R, DRAPER B A, et al. Visual object tracking using adaptive correlation filters[C]//2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE Press, 2010: 2544-2550.
    [3]
    HENRIQUES J F, CASEIRO R, MARTINS P, et al. High-speed tracking with kernelized correlation filters[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 37(3): 583-596. doi: 10.1109/TPAMI.2014.2345390
    [4]
    DANELLJAN M, BHAT G, SHAHBAZ K F, et al. ECO: Efficient convolution operators for tracking[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE Press, 2017: 6638-6646.
    [5]
    李玺, 查宇飞, 张天柱, 等. 基于深度学习的目标跟踪算法发展综述[J]. 中国图象图形学报, 2019, 24(12): 2057-2080. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTB201912001.htm

    LI X, ZHA Y F, ZHANG T Z, et al. A survey of visual object tracking algorithms based on deep learning[J]. Journal of Image and Graphics, 2019, 24(12): 2057-2080(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTB201912001.htm
    [6]
    WANG N, YEUNG D Y. Learning a deep compact image representation for visual tracking[C]//Proceedings of the 26th International Conference on Neural Information Processing Systems. New York: ACM, 2013: 809-817.
    [7]
    MA C, HUANG J B, YANG X, et al. Hierarchical convolutional features for visual tracking[C]//Proceedings of the IEEE International Conference on Computer Vision. Piscataway: IEEE Press, 2015: 3074-3082.
    [8]
    BERTINETTO L, VALMADRE J, HENRIQUES J F, et al. Fully-convolutional Siamese networks for object tracking[C]//European Conference on Computer Vision. Berlin: Springer, 2016: 850-865.
    [9]
    HE A, LUO C, TIAN X, et al. A twofold Siamese network for real-time object tracking[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE Press, 2018: 4834-4843.
    [10]
    LI B, YAN J, WU W, et al. High performance visual tracking with Siamese region proposal network[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE Press, 2018: 8971-8980.
    [11]
    FAN H, LING H. Siamese cascaded region proposal networks for realtime visual tracking[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE Press, 2019: 7952-7961.
    [12]
    SHEN J, TANG X, DONG X, et al. Visual object tracking by hierarchical attention Siamese network[J]. IEEE Transactions on Cybernetics, 2019, 50(7): 3068-3080.
    [13]
    ZHANG Z, PENG H. Deeper and wider Siamese networks for real-time visual tracking[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE Press, 2019: 4591-4600.
    [14]
    HE K, ZHANG X, REN S, et al. Deep residual learning for image recognition[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE Press, 2016: 770-778.
    [15]
    KEIZHEVSKY A, SUTSKEVER I, HINTON G E. ImageNet classification with deep convolutional neural networks[C]//Advances in Neural Information Processing Systems, 2012: 1097-1105.
    [16]
    WANG Q, TENG Z, XING J, et al. Learning attentions: Residual attentional Siamese network for high performance online visual tracking[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE Press, 2018: 4854-4863.
    [17]
    WANG F, JIANG M, QIAN C, et al. Residual attention network for image classification[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE Press, 2017: 3156-3164.
    [18]
    HU J, SHEN L, SUN G. Squeeze-and-excitation networks[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE Press, 2018: 7132-7141.
    [19]
    WOO S, PARK J, LEE J Y, et al. CBAM: Convolutional block attention module[C]//European Conference on Computer Vision. Berlin: Springer, 2018: 3-19.
    [20]
    WANG Q, WU B, ZHU P, et al. ECA-Net: Efficient channel attention for deep convolutional neural networks[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE Press, 2020: 11534-11542.
    [21]
    WANG X, GIRSHICK R, GUPTA A, et al. Non-local neural networks[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE Press, 2018: 7794-7803.
    [22]
    HUANG Z, WANG X, HUANG L, et al. CCNet: Criss-cross attention for semantic segmentation[C]//Proceedings of the IEEE International Conference on Computer Vision. Piscataway: IEEE Press, 2019: 603-612.
    [23]
    KONG T, SUN F, LIU H, et al. FoveaBox: Beyound anchor-based object detection[J]. IEEE Transactions on Image Processing, 2020, 29: 7389-7398. doi: 10.1109/TIP.2020.3002345
    [24]
    LI B, WU W, WANG Q, et al. SiamRPN++: Evolution of Siamese visual tracking with very deep networks[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE Press, 2019: 4282-4291.
    [25]
    ZHU Z, WANG Q, LI B, et al. Distractor-aware Siamese networks for visual object tracking[C]//European Conference on Computer Vision. Berlin: Springer, 2018: 101-117.
    [26]
    LIN T Y, GOYAL P, GIRSHICK R, et al. Focal loss for dense object detection[C]//Proceedings of the IEEE International Conference on Computer Vision. Piscataway: IEEE Press, 2017: 2980-2988.
    [27]
    HUANG L, ZHAO X, HUANG K. GOT-10k: A large high-diversity benchmark for generic object tracking in the wild[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2021, 43(5): 1562-1577.
    [28]
    FAN H, LIN L, YANG F, et al. LaSOT: A high-quality benchmark for large-scale single object tracking[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE Press, 2019: 5374-5383.
    [29]
    WU Y, LIM J, YANG M H. Online object tracking: A benchmark[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE Press, 2013: 2411-2418.
    [30]
    DANELLJAN M, BHAT G, KHAN F S, et al. ATOM: Accurate tracking by overlap maximization[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE Press, 2019: 4660-4669.
    [31]
    LI P, CHEN B, OUYANG W, et al. GradNet: Gradient-guided network for visual object tracking[C]//Proceedings of the IEEE International Conference on Computer Vision. Piscataway: IEEE Press, 2019: 6162-6171.
    [32]
    GAO J, ZHANG T, XU C. Graph convolutional tracking[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE Press, 2019: 4649-4659.
    [33]
    WANG G, LUO C, XIONG Z, et al. SPM-tracker: Series-parallel matching for real-time visual object tracking[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE Press, 2019: 3643-3652.
    [34]
    WANG Q, ZHANG L, BERTINETTO L, et al. Fast online object tracking and segmentation: A unifying approach[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE Press, 2019: 1328-1338.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(11)  / Tables(3)

    Article Metrics

    Article views(345) PDF downloads(56) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return