Volume 48 Issue 7
Jul.  2022
Turn off MathJax
Article Contents
YANG Lan, AN Chao, XIE Changchuan, et al. Gust load alleviation analysis based on vortex lattice method in state-space form[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(7): 1200-1209. doi: 10.13700/j.bh.1001-5965.2021.0023(in Chinese)
Citation: YANG Lan, AN Chao, XIE Changchuan, et al. Gust load alleviation analysis based on vortex lattice method in state-space form[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(7): 1200-1209. doi: 10.13700/j.bh.1001-5965.2021.0023(in Chinese)

Gust load alleviation analysis based on vortex lattice method in state-space form

doi: 10.13700/j.bh.1001-5965.2021.0023
More Information
  • Corresponding author: AN Chao, E-mail: ac@buaa.edu.cn
  • Received Date: 15 Jan 2021
  • Accepted Date: 19 Mar 2021
  • Publish Date: 27 Apr 2021
  • Gust response and gust load alleviation control system design is an important issue in aeroelasticity. This paper presents a gust response model based on the vortex lattice method (VLM) in state-space formulation and gives the couple relationships between finite element method modes/control surface modes and boundary conditions of VLM, which can be applied to complicated aircraft model. This method can avoid the disadvantages of the traditional gust response analysis method with no requirement of rational function assessment and iteration calculation with lots of resources. Introducing the traditional PID control algorithm, a gust load alleviation system is given, and gust time response of open loop/closed loop under a discrete gust and von Karman continuum gust excitation are presented. The alleviation effect can be solved by contrasting the response amplitude. The simulation results show that gust response analysis results based on this method are accurate and the gust load alleviation control system can alleviate the load response of the original aeroelastic system effectively.

     

  • loading
  • [1]
    杨超. 飞行器气动弹性原理[M]. 2版. 北京: 北京航空航天大学出版社, 2016.

    YANG C. Aeroelastic theory of aircraft[M]. 2nd ed. Beijing: Beihang University Press, 2016(in Chinese).
    [2]
    金长江, 肖业伦. 大气扰动中的飞行原理[M]. 北京: 国防工业出社, 1992.

    JIN C J, XIAO Y L. Flight principle with atmosphere turbulence[M]. Beijing: National Defence Industry Press, 1992(in Chinese).
    [3]
    SU W H, CESNIK C E S. Dynamic response of highly flexible flying wing[J]. AIAA Journal, 2011, 49(2): 324-339. doi: 10.2514/1.J050496
    [4]
    AN C, YANG C, XIE C C, et al. Flutter and gust response analysis of a wing model including geometric nonlinearities based on a modified structural ROM[J]. Chinese Journal of Aeronautics, 2020, 33(1): 48-63. doi: 10.1016/j.cja.2019.07.006
    [5]
    NOTT T E, BROWN J M, PEREZ-DAVIS M E, et al. Investigation of the helios prototype aircraft mishap: HQ 04-283[R]. Hampton: NASA Langley Research Center, 2004.
    [6]
    KARA J, PLOTKIN A. Low-speed aerodynamics: From wing theory to panel method[M]. Cambridge: Cambridge University Press, 2001.
    [7]
    AZOULAY D, KARPEL M. Characterization of method for computation of aeroservoelastic response to gust excitation: AIAA-2006-1938[R]. Reston: AIAA, 2006.
    [8]
    KARPEL M, MOULIN B, CHEN P C. Dynamic response of aeroservoelastic systems to gust excitation[J]. Journal of Aircraft, 2005, 42(5): 1264-1272. doi: 10.2514/1.6678
    [9]
    陈磊, 吴志刚, 杨超, 等. 多控制面机翼阵风减缓主动控制与风洞试验验证[J]. 航空学报, 2009, 30(12): 2250-2256. doi: 10.3321/j.issn:1000-6893.2009.12.002

    CHEN L, WU Z G, YANG C, et al. Active control and wind tunnel test vertification of multi-control surfaces wing for gust alleviation[J]. Acta Aeronautic et Astronautica Sinica, 2009, 30(12): 2250-2256(in Chinese). doi: 10.3321/j.issn:1000-6893.2009.12.002
    [10]
    WANG Z, CHEN P C, LIU D D, et al. Nonlinear-aerodynamics/nonlinear-structure interaction methodology for a high-altitude long-endurance wing[J]. Journal of Aircraft, 2010, 47(2): 556-566. doi: 10.2514/1.45694
    [11]
    SU W H, CESNIK C E S. Dynamic response of highly flexible flying wings[C]//Proceeding of the 47th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference. Reston: AIAA, 2006: 412-435.
    [12]
    LIU Y, XIE C C, YANG C, et al. Gust response analysis and wind tunnel test for a high-aspect ratio wing[J]. Chinese Journal of Aeronautics, 2016, 29(1): 91-103. doi: 10.1016/j.cja.2015.12.013
    [13]
    GUO D, XU M, CHEN S L. Nonlinear gust response analysis of free flexible aircraft[J]. International Journal of Intelligent System Application (IJISA), 2013, 5(2): 1-15. doi: 10.5815/ijisa.2013.02.01
    [14]
    WERTER N P M, DE BREUKER R. A novel dynamic aeroelastic framework for aeroelastic tailoring and structural optimisation[J]. Composite Structures, 2016, 158: 369-386. doi: 10.1016/j.compstruct.2016.09.044
    [15]
    WERTER N P M, DE BREUKER R, ABDALLA M M. Continuous-time state-space unsteady aerodynamic modeling for efficient loads analysis[J]. AIAA Journal, 2018, 56(3): 905-916. doi: 10.2514/1.J056068
    [16]
    WU Z G, CHEN L, YANG C, et al. Gust response modeling and alleviation scheme design for an elastic aircraft[J]. Science China Technological Sciences, 2010, 53(11): 3110-3118. doi: 10.1007/s11431-010-4141-y
    [17]
    聂雪媛, 杨国伟. 基于CFD降阶模型的阵风减缓主动控制研究[J]. 航空学报, 2015, 36(4): 1103-1111. https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201504008.htm

    NIE X Y, YANG G W. Gust alleviation active control based on CFD reduced-order models[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(4): 1103-1111(in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201504008.htm
    [18]
    LIU X, SUN Q, COOPER J E. LQG based model predictive control for gust load alleviation[J]. Aerospace Science and Technology, 2017, 71: 499-509.
    [19]
    YAGIL L, RAVEH D E, IDAN M. Deformation control of highly flexible aircraft in trimmed flight and gust encounter[J]. Journal of Aircraft, 2018, 55(2): 829-840.
    [20]
    DAY Y T, YANG C, WANG C L. Strategy for rubust gust response alleviation of an aircraft mode[J]. Control Engineering Practice, 2017, 60(3): 211-217.
    [21]
    谢长川. 飞行器气动弹性稳定性静/动耦合理论与试验研究[D]. 北京: 北京航空航天大学, 2011.

    XIE C C. Static/dynamics coupling theory and test study of aircraft aeroelastic stability[D]. Beijing: Beihang University, 2011(in Chinese).
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(19)  / Tables(4)

    Article Metrics

    Article views(331) PDF downloads(106) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return