Volume 48 Issue 7
Jul.  2022
Turn off MathJax
Article Contents
HONG Zheng, YE Zhengyin. Numerical investigation on evolution of T-S wave on a two-dimensional compliant wall with finite length[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(7): 1190-1199. doi: 10.13700/j.bh.1001-5965.2021.0030(in Chinese)
Citation: HONG Zheng, YE Zhengyin. Numerical investigation on evolution of T-S wave on a two-dimensional compliant wall with finite length[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(7): 1190-1199. doi: 10.13700/j.bh.1001-5965.2021.0030(in Chinese)

Numerical investigation on evolution of T-S wave on a two-dimensional compliant wall with finite length

doi: 10.13700/j.bh.1001-5965.2021.0030
Funds:

National Natural Science Foundation of China 12072281

More Information
  • Corresponding author: YE Zhengyin, E-mail: yezy@nwpu.edu.cn
  • Received Date: 20 Jan 2021
  • Accepted Date: 07 Mar 2021
  • Publish Date: 25 Mar 2021
  • Inspired by the flexible characteristics of bird feathers, numerical simulations are used to study the influence of the compliant wall on the evolution of T-S wave in the subsonic boundary layer flow. First, the numerical results on the rigid wall are in good agreement with the linear stability theory, which verifies the reliability of the adopted numerical methods. On this basis, part of the rigid wall is replaced with a compliant wall, and the results show that the compliant wall can suppress the spatial growth of T-S wave, thus delaying the flow transition. Furthermore, the deformation of the compliant wall not only follows the waveform of T-S wave, but also includes larger-scale vibrations with the same frequency as the disturbance source, which are caused by the leading edge and trailing edge of the compliant section. The actual deformation of the compliant wall is a superposition of these waves. Later parameter study shows that increasing the surface mass density has almost no effect on the compliant wall in terms of attenuating disturbance. Increasing the surface tension or increasing the elastic coefficient of the foundation can increase the stiffness of the compliant wall and thus reduce the amplitude of wall deformation. Increasing the damping can suppress the propagation of large-scale wall vibrations generated at the leading edge and trailing edge of the compliant section, while having little effect on the deformation directly corresponding to T-S wave. The overall trend is that when the amplitude of wall deformation decreases, the attenuation effect of the compliant wall on T-S wave decreases.

     

  • loading
  • [1]
    屈秋林, 王晋军. 鸟类飞行空气动力学对人类飞行的启示[J]. 物理, 2016, 45(10): 640-644. doi: 10.7693/wl20161003

    QU Q L, WANG J J. Human flight inspired by the aerodynamics of bird flight[J]. Physics, 2016, 45(10): 640-644(in Chinese). doi: 10.7693/wl20161003
    [2]
    VIDELER J J. Avian flight[M]. Oxford: Oxford University Press, 2006.
    [3]
    LINCOLN F C, PETERSON S R. Migration of birds[M]. [S. l. ]: US Fish and Wildlife Service, US Department of the Interior, 1979.
    [4]
    CROXALL J P, SILK J R, PHILLIPS R A, et al. Global circumnavigations: Tracking year-around ranges of nonbreeding albatrosses[J]. Science, 2005, 307(5707): 249-250. doi: 10.1126/science.1106042
    [5]
    GRAY J. Studies in animal locomotion VI-The propulsive powers of the dolphin[J]. Journal of Experimental Biology, 1936, 13(2): 192-199. doi: 10.1242/jeb.13.2.192
    [6]
    KRAMER M O. Boundary layer stabilization by distributed damping[J]. Journal of the Aerospace Sciences, 1960, 27(1): 69. doi: 10.2514/8.8380
    [7]
    KRAMER M O. Boundary layer stabilization by distributed damping[J]. Naval Engineers Journal, 1962, 74(2): 341-348. doi: 10.1111/j.1559-3584.1962.tb05568.x
    [8]
    GAD-EL-HAK M. Compliant coating for drag reduction[J]. Progress in Aerospace Sciences, 2002, 38(1): 77-99. doi: 10.1016/S0376-0421(01)00020-3
    [9]
    CARPENTER P W, GARRAD A D. The hydrodynamic stability of flow over Kramer-type compliant surfaces. Part 1. Tollmien-Schlichting instabilities[J]. Journal of Fluid Mechanics, 1985, 155: 465-510. doi: 10.1017/S0022112085001902
    [10]
    CARPENTER P W, GARRAD A D. The hydrodynamic stability of flow over Kramer-type compliant surfaces. Part 2. Flow-induced surface instability[J]. Journal of Fluid Mechanics, 1986, 170: 199-232. doi: 10.1017/S002211208600085X
    [11]
    LEE C, KIM J. Control of the viscous sublayer for drag reduction[J]. Physics of Fluids, 2002, 14(7): 2523-2529. doi: 10.1063/1.1454997
    [12]
    DAVIES C, CARPENTER P W. Numerical simulation of the evolution of Tollmien-Schlichting waves over finite compliant panels[J]. Journal of Fluid Mechanics, 1997, 335: 361-392. doi: 10.1017/S0022112096004636
    [13]
    WANG Z, YEO K S, KHOO B C. On two-dimensional linear waves in Blasius boundary layer over viscoelastic layers[J]. European Journal of Mechanics-B/Fluids, 2006, 25(1): 33-58. doi: 10.1016/j.euromechflu.2005.04.006
    [14]
    DUNCAN J H. The response of an incompressible, viscoelastic coating to pressure fluctuations in a turbulent boundary layer[J]. Journal of Fluid Mechanics, 1986, 171: 339-363. doi: 10.1017/S0022112086001477
    [15]
    KIREIKO G V. Interaction of wall turbulence with a compliant surface[J]. Fluid Dynamics, 1990, 25(4): 550-554.
    [16]
    XU S, REMPFER D, LUMLEY J. Turbulence over a compliant surface: Numerical simulation and analysis[J]. Journal of Fluid Mechanics, 2003, 478: 11-34. doi: 10.1017/S0022112002003324
    [17]
    KIM E, CHOI H. Space-time characteristics of a compliant wall in a turbulent channel flow[J]. Journal of Fluid Mechanics, 2014, 756: 30-53. doi: 10.1017/jfm.2014.444
    [18]
    XIA Q J, HUANG W X, XU C X. Direct numerical simulation of turbulent boundary layer over a compliant wall[J]. Journal of Fluids and Structures, 2017, 71: 126-142. doi: 10.1016/j.jfluidstructs.2017.03.005
    [19]
    CHOI K S, YANG X, CLAYTON B R, et al. Turbulent drag reduction using compliant surfaces[J]. Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences, 1997, 453(1965): 2229-2240. doi: 10.1098/rspa.1997.0119
    [20]
    ZHANG C, WANG J, BLAKE W, et al. Deformation of a compliant wall in a turbulent channel flow[J]. Journal of Fluid Mechanics, 2017, 823: 345-390. doi: 10.1017/jfm.2017.299
    [21]
    JOZSA T I. Analytical solutions of incompressible laminar channel and pipe flow driven by in-plane wall oscillations[J]. Physics of Fluids, 2019, 31(8): 083605. doi: 10.1063/1.5104356
    [22]
    JOZSA T I, BALARAS E, KASHTALYAN M, et al. Active and passive in-plane wall fluctuations in turbulent channel flows[J]. Journal of Fluid Mechanics, 2019, 866: 689-720. doi: 10.1017/jfm.2019.145
    [23]
    LEE C, JIANG X. Flow structures in transitional and turbulent boundary layers[J]. Physics of Fluids, 2019, 31(11): 111301. doi: 10.1063/1.5121810
    [24]
    LIAO F, YE Z Y, ZHANG L X. Extending geometric conservation law to cell-centered finite difference method on stationary grids[J]. Journal of Computational Physics, 2015, 284: 419-433. doi: 10.1016/j.jcp.2014.12.040
    [25]
    FASEL H, KONZELMANN U. Nonparallel stability of a flat-plate boundary layer using the complete Navier-Stokes equations[J]. Journal of Fluid Mechanics, 1990, 221: 311-347.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(16)  / Tables(2)

    Article Metrics

    Article views(247) PDF downloads(186) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return