Citation: | HE Yanchao, XU Ming. Design of long-duration high-precision repeat ground-track orbit and its impulsive orbital control strategy[J]. Journal of Beijing University of Aeronautics and Astronautics, 2021, 47(11): 2256-2267. doi: 10.13700/j.bh.1001-5965.2021.0178(in Chinese) |
Aimed at the design and maintenance of long-duration repeat ground-track orbit, this paper deals with a semi-analytical method based on high-order Poincaré maps for the optimal design and control of repeat ground-track orbit in the high-precision gravity fields, including the factors of atmospheric drag, solar radiation pressure and three-body perturbations. The method is based on the high-order expansion of Poincaré maps, which is expressed as the polynomials, to propagate the orbit for one or more repeat cycles, enabling the precise orbit design and control by performing impulsive control at the equatorial crossings. The method, aimed at both the high-accuracy and low-accuracy constraints, is proposed and applied to missions like the repeat pattern of TerraSAR-X, Landsat-8, IRS-P6, SPOT-7 and UoSAT-12. The present method has the advantages in high computational efficiency and high accuracy, which is suitable for the on-board autonomous orbital propagation and orbital control.
[1] |
LARA M. Searching for repeating ground track orbits: A systematic approach[J]. Journal of the Astronautical Sciences, 1999, 47(3): 177-188. doi: 10.1007/BF03546198?utm_medium=affiliate&utm_content=meta&utm_campaign=DDCN_1_GL01_metadata
|
[2] |
AORPIMAI M, PALMER P L. Repeat-ground track orbit acquisition and maintenance for earth-observation satellites[J]. Journal of Guidance, Control, and Dynamics, 2007, 30(3): 654-659. doi: 10.2514/1.23413
|
[3] |
NADOUSHAN M J, ASSADIAN N. Repeat ground track orbit design with desired revisit time and optimal tilt[J]. Aerospace Science and Technology, 2015, 40: 200-208. doi: 10.1016/j.ast.2014.11.007
|
[4] |
FU X, WU M, TANG Y. Design and maintenance of low-earth repeat-ground-track successive-coverage orbits[J]. Journal of Guidance, Control, and Dynamics, 2012, 35(2): 686-691. doi: 10.2514/1.54780
|
[5] |
LARA M. Repeat ground track orbits of the Earth tesseral problem as bifurcations of the equatorial family of periodic orbits[J]. Celestial Mechanics and Dynamical Astronomy, 2003, 86(2): 143-162. doi: 10.1023/A:1024195900757
|
[6] |
LARA M, RUSSELL R P. Fast design of repeat ground track orbits in high-fidelity geopotentials[J]. Journal of the Astronautical Sciences, 2008, 56(3): 311-324. doi: 10.1007/BF03256555
|
[7] |
杨盛庆, 杜耀珂, 陈筠力. 基于迭代修正方法的严格回归轨道设计[J]. 宇航学报, 2016, 37(4): 420-426. doi: 10.3873/j.issn.1000-1328.2016.04.007
YANG S Q, DU Y K, CHEN J L. Design of strictly-regressive orbit based on iterative adjustment method[J]. Journal of Astronautics, 2016, 37(4): 420-426(in Chinese). doi: 10.3873/j.issn.1000-1328.2016.04.007
|
[8] |
SENGUPTA P, VADALI S R, ALFRIEND K T. Satellite orbit design and maintenance for terrestrial coverage[J]. Journal of Spacecraft and Rockets, 2010, 47(1): 177-187. doi: 10.2514/1.44120
|
[9] |
温生林, 闫野, 张华. 低轨回归轨道卫星轨迹漂移特性分析与控制[J]. 系统工程与电子技术, 2015, 37(3): 613-619. https://www.cnki.com.cn/Article/CJFDTOTAL-XTYD201503023.htm
WEN S L, YAN Y, ZHANG H. Analysis and control of groundtrack drift for recursive low Earth orbit satellites[J]. Systems Engineering and Electronic, 2015, 37(3): 613-619(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-XTYD201503023.htm
|
[10] |
张冲难, 卞燕山, 王西京, 等. 严格回归轨道自动生成算法及实现[J]. 推进技术, 2018, 39(7): 1472-1478. https://www.cnki.com.cn/Article/CJFDTOTAL-TJJS201807004.htm
ZHANG C N, BIAN Y S, WANG X J, et al. Algorithm and implementation of automatic generation of rigorous recursive orbit[J]. Journal of Propulsion Technology, 2018, 39(7): 1472-1478(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-TJJS201807004.htm
|
[11] |
BERZ M. Modern map methods in particle beam physics[M]. London: Academic Press, 1999.
|
[12] |
BERZ M, MAKINO K. COSY INFINITY version 8.1 user's guide and reference manual[Z]. East Lansing: Michigan State University, 2002.
|
[13] |
HE Y, ARMELLIN R, XU M. Bounded relative orbits in the zonal problem via high-order Poincaré maps[J]. Journal of Guidance, Control, and Dynamics, 2019, 42(1): 91-108. doi: 10.2514/1.G003612
|
[14] |
杨盛庆, 杜耀珂, 王文妍, 等. 严格回归轨道的管道导航方法研究[J]. 中国空间科学技术, 2017, 37(6): 10-16. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKJ201706003.htm
YANG S Q, DU Y K, WANG W Y, et al. Study on the tube navigation of strictly regressive orbit[J]. Chinese Space Science and Technology, 2017, 37(6): 10-16(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKJ201706003.htm
|
[15] |
FOUQUET M, SWEETING M. UoSAT-12 minisatellite for high performance Earth observation at low cost[J]. Acta Astronautica, 1997, 41(3): 173-182. doi: 10.1016/S0094-5765(97)00181-1
|