Volume 48 Issue 7
Jul.  2022
Turn off MathJax
Article Contents
LIANG Fengchao, TAN Shuang, HUANG Gang, et al. Design and implementation of a high precision 6-DOF parallel platform for a space optical remote sensor[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(7): 1332-1342. doi: 10.13700/j.bh.1001-5965.2021.0224(in Chinese)
Citation: LIANG Fengchao, TAN Shuang, HUANG Gang, et al. Design and implementation of a high precision 6-DOF parallel platform for a space optical remote sensor[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(7): 1332-1342. doi: 10.13700/j.bh.1001-5965.2021.0224(in Chinese)

Design and implementation of a high precision 6-DOF parallel platform for a space optical remote sensor

doi: 10.13700/j.bh.1001-5965.2021.0224
Funds:

China Russia Joint Development Project of Equipment Development Department 03CN19018/2021GWKJ-5Y-LZYD

More Information
  • Corresponding author: LIANG Fengchao, E-mail: fc.liang@qq.com
  • Received Date: 06 May 2021
  • Accepted Date: 13 Jun 2022
  • Publish Date: 19 Jul 2021
  • The high precision 6-DOF parallel platform can precisely adjust the position and pose of the secondary mirror of the space optical remote sensor, which could realize the ground optical alignment and the active correction of optical aberration on orbit. In order to solve the two difficulties, ie, ulti index and multi constraint structural optimization design and high-resolution driving strut design, in the development of a high-precision parallel platform, 3 steps are taken as follows: Firstly, the inverse solution mathematical model and ADAMS parametric model of the 6-DOF parallel mechanism are established, and the structure optimization objective function is determined. The structure optimization design is carried out in combination with the constraints such as strut length and hinge angle, therefore, the structure parameters and the requirement of 60 nm driving strut resolution are obtained. Then, to get high resolution strut, the driving strut based on "brushless DC motor+ball screw+grating ruler" is designed, and PI control law is used to realize the high-precision closed-loop servo control of eliminating static error. As a result, the resolution of the driving strut reaches 50 nm. Finally, the accuracy of the parallel platform is tested, and the test results show that the resolution of the platform is 0.2 μm, and the angular resolution is 1″, which meet the requirements of the index. The platform has been successfully applied to the ground optical alignment and aberration active correction experiment of the space remote sensor, which lays a solid theoretical and practical foundation for the on orbit application.

     

  • loading
  • [1]
    CLAMPIN M. The James Webb space telescope (JWST)[J]. Advances in Space Research, 2008, 41(12): 1983-1991. doi: 10.1016/j.asr.2008.01.010
    [2]
    WARDEN R M. Cryogenic nano-actuator for JWST[C]//Proceedings of the 38th Aerospace Mechanisms Symposium, 2006: 239-252.
    [3]
    谭爽. 空间光学遥感器次镜六自由度精密控制方法研究[D]. 北京: 中国空间技术研究院, 2015.

    TAN S. Studies on high precision control of 6-DOF second mirror of the space optical remote sensor[D]. Beijing: China Academy of Space Technology, 2015(in Chinese).
    [4]
    MERLET J P. Parallel robots[M]. 2nd ed. Berlin: Springer, 2006: 66-74.
    [5]
    KONG X W, GOSSELIN C. Type synthesis of parallel mechanisms[M]. Berlin: Springer, 2007.
    [6]
    王富国, 张景旭, 杨飞, 等. 四翼梁式次镜支撑结构的研究[J]. 光子学报, 2009, 38(3): 674-676. https://www.cnki.com.cn/Article/CJFDTOTAL-GZXB200903047.htm

    WANG F G, ZHANG J X, YANG F, et al. Crossed-plate type support structure of the second mirror[J]. Acta Photonica Sinica, 2009, 38(3): 674-676(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-GZXB200903047.htm
    [7]
    温正方, 张景旭, 张丽敏. 五自由度次镜调整机构的研究[J]. 工程设计学报, 2010, 17(6): 473-478. https://www.cnki.com.cn/Article/CJFDTOTAL-GCSJ201006017.htm

    WEN Z F, ZHANG J X, ZHANG L M. Research of five-degree-of-freedom adjustment mechanismfor secondary mirror[J]. Journal of Engineering Design, 2010, 17(6): 473-478(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-GCSJ201006017.htm
    [8]
    房海蓉, 王立, 张涛强, 等. 一种含闭环吏链的新型并联机构设计与分析[J]. 北京航空航天大学学报, 2019, 45(3): 454-463. doi: 10.13700/j.bh.1001-5965.2018.0411

    FANG H R, WANG L, ZHANG T Q, el al. Design and analysis of a novel parallel mechanism with closed-loop limbs[J]. Journal of Beijing University of Aeronautics and Astronautics, 2019, 45(3): 454-463(in Chinese). doi: 10.13700/j.bh.1001-5965.2018.0411
    [9]
    房海蓉, 李壮壮. 新型大转角2T2R并联机构的设计与分析[J]. 北京航空航天大学学报, 2020, 46(3): 465-473. doi: 10.13700/j.bh.1001-5965.2019.0217

    FANG H R, LI Z Z. Design and analysis of a new large rotation angle 2T2R parallel mechanism[J]. Journal of Beijing University of Aeronautics and Astronautics, 2020, 46(3): 465-473(in Chinese). doi: 10.13700/j.bh.1001-5965.2019.0217
    [10]
    陈淼, 张氢, 葛韵斐, 等. 2UPR-RRU并联机构及其运动学分析[J]. 北京航空航天大学学报, 2019, 45(6): 1145-1152. doi: 10.13700/j.bh.1001-5965.2018.0575

    CHEN M, ZHANG Q, GE Y F, et al. 2UPR-RRU parallel mechanism and its kinematic analysis[J]. Journal of Beijing University of Aeronautics and Astronautics, 2019, 45(6): 1145-1152(in Chinese). doi: 10.13700/j.bh.1001-5965.2018.0575
    [11]
    王保兴, 孟刚, 林苗, 等. 3-PPP型柔性并联微定位平台的设计与分析[J]. 北京航空航天大学学报, 2020, 46(4): 798-807. doi: 10.13700/j.bh.1001-5965.2019.0286

    WANG B X, MENG G, LIN M, et al. Design and analysis of a 3-PPP compliant parallel micro-positioning stage[J]. Journal of Beijing University of Aeronautics and Astronautics, 2020, 46(4): 798-807(in Chinese). doi: 10.13700/j.bh.1001-5965.2019.0286
    [12]
    TOULEMONT Y, PASSVOGEL T, PILBRATT G L, et al. The 3.5-m all-SiC telescope for HERSCHEL[C]//Proc SPIE 5487, Optical, Infrared, and Millimeter Space Telescopes. Bellingham: SPIE, 2004, 5487: 1119-1128.
    [13]
    SCHIPANI P, PERROTTA F, MOLFESE C, et al. The VST secondary mirror support system[C]//Proc SPIE 7018, Advanced Optical and Mechanical Technologies in Telescopes and Instrumentation. Bellingham: SPIE, 2008, 7018: 1380-1389.
    [14]
    于阳, 徐振邦, 于鹏, 等. 空间光学遥感器次镜定位平台的设计与测试[J]. 载人航天, 2016, 22(1): 74-80. https://www.cnki.com.cn/Article/CJFDTOTAL-ZRHT201601014.htm

    YU Y, XU Z B, YU P, et al. Design and test of parallel platform with precise positioning for secondary mirrors in space optical telescope[J]. Manned Spaceflight, 2016, 22(1): 74-80(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-ZRHT201601014.htm
    [15]
    GOUGH V E, WHITEHALL S G. Universal tyre test machine[C]//Proceedings of the 9th International Technical Congress, 1962: 117.
    [16]
    STEWART D. A platform with six degrees of freedom[J]. Proceedings of the Institution of Mechanical Engineers, 1965, 180(1): 371-386.
    [17]
    黄真, 孔令富, 方跃法. 并联机器人机构学理论及控制[M]. 北京: 机械工业出版社, 1997: 18-29.

    HUANG Z, KONG L F, FANG Y F. Mechanism theory and control of parallel manipulator[M]. Beijing: China Machine Press, 1997: 18-29(in Chinese).
    [18]
    CRAIG J J. Introduction to robotics mechanics and control[M]. Upper Saddle River: Prentice Hall, 2005: 28-41.
    [19]
    卢礼华, 梁迎春, 大刀川博之, 等. 快速无超调纳米定位[J]. 纳米技术与精密工程, 2006, 4(3): 212-216. https://www.cnki.com.cn/Article/CJFDTOTAL-NMJM200603009.htm

    LU L H, LIANG Y C, TACHIKAWA H, et al. Rapid nanometer positioning without overshoot[J]. Nanotechnology and Precision Engineering, 2006, 4(3): 212-216(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-NMJM200603009.htm
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(18)  / Tables(5)

    Article Metrics

    Article views(1240) PDF downloads(38) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return