Volume 48 Issue 7
Jul.  2022
Turn off MathJax
Article Contents
LIU Yanbin, WANG Xuesheng, QIN Xinya, et al. Design and characteristics of reverse direct-acting high-pressure reducing valve for pneumatic actuator[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(7): 1164-1173. doi: 10.13700/j.bh.1001-5965.2021.0292(in Chinese)
Citation: LIU Yanbin, WANG Xuesheng, QIN Xinya, et al. Design and characteristics of reverse direct-acting high-pressure reducing valve for pneumatic actuator[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(7): 1164-1173. doi: 10.13700/j.bh.1001-5965.2021.0292(in Chinese)

Design and characteristics of reverse direct-acting high-pressure reducing valve for pneumatic actuator

doi: 10.13700/j.bh.1001-5965.2021.0292
Funds:

Industry-University-Research Cooperation Fund of the Eighth Research Institute of China Aerospace Science and Technology Corporation SAST2020-111

More Information
  • Corresponding author: WANG Xuesheng, E-mail: wangxs@ecust.edu.cn
  • Received Date: 02 Jun 2021
  • Accepted Date: 29 Aug 2021
  • Publish Date: 29 Sep 2021
  • Pneumatic actuator is the key component of the flight attitude control system for air-defense missile, directly influences flying stability and attitude control ability. Missile-borne high-pressure gas provides power for pneumatic actuator through pressure reduction, which can reduce the space occupied by the pneumatic system and increase missile range by carrying more gas. For a particular type of missile, a reverse non-balanced direct-acting high-pressure reducing valve with conical clack was designed. Mathematical models of thermodynamic and static analysis were built for the valve and the design & check software were developed. The simulation models with steady and unsteady inlet pressure were built based on AMESim, and the characteristics of pressure, flow rate and spool displacement were analyzed. Results show that the pressure reducing valve has good pressure and flow characteristics under design parameters, and the theoretical calculation and simulation results agree well.

     

  • loading
  • [1]
    陈汉超. 气动舵机高压减压阀的分析与设计[J]. 北京理工大学学报(自然科学版), 1980, 9(2): 57-62. https://www.cnki.com.cn/Article/CJFDTOTAL-BJLG198902009.htm

    CHEN H C. Analysis and design of a high pressure reducer valve for pneumatic actuator[J]. Transaction of Beijing Institute of Technology(Natural Science), 1980, 9(2): 57-62(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-BJLG198902009.htm
    [2]
    POOLE H A. A stored gas actuator unit for the TOW missile: 650338[R]. Washington, D.C. : SAE International, 1965: 361-376.
    [3]
    陈青山. 某型近距防空导弹弹载气路系统设计[J]. 航空兵器, 2007(6): 16-19. https://www.cnki.com.cn/Article/CJFDTOTAL-HKBQ200706005.htm

    CHEN Q S. A kind of close quarters aerial defence missile gas supply system design[J]. Aero Weaponry, 2007(6): 16-19(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HKBQ200706005.htm
    [4]
    陈汉超, 盛永才. 气压传动与控制[M]. 北京: 北京工业学院出版社, 1987.

    CHEN H C, SHENG Y C. Pneumatic transmission and control[M]. Beijing: Beijing Institute of Technology Press, 1987(in Chinese).
    [5]
    周铭杰. 浅谈减压阀的结构设计[J]. 液压与气动, 2005(3): 62-63. https://www.cnki.com.cn/Article/CJFDTOTAL-YYYQ200503025.htm

    ZHOU M J. Discuss of structural design of the relief pressure valve lightly[J]. Chinese Hydraulics & Pneumatics, 2005(3): 62-63(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-YYYQ200503025.htm
    [6]
    孙冰, 许琪, 陈阳, 等. 双级气体减压器稳定性影响因素数值分析[J]. 北京航空航天大学学报, 2014, 40(12): 1660-1665. doi: 10.13700/j.bh.1001-5965.2014.0012#viewType=Abstract

    SUN B, XU Q, CHEN Y, et al. Numerical analysis of influence factors on stability for dual-stage gas pressure reducing regulator[J]. Journal of Beijing University of Aeronautics and Astronautics, 2014, 40(12): 1660-1665(in Chinese). doi: 10.13700/j.bh.1001-5965.2014.0012#viewType=Abstract
    [7]
    CHEN F Q, QIAN J Y, CHEN M R, et al. Turbulent compressible flow analysis on multi-stage high pressure reducing valve[J]. Flow Measurement and Instrumentation, 2018, 61: 26-37. doi: 10.1016/j.flowmeasinst.2018.03.013
    [8]
    CASARI N, PINELLI M, SUMAN A, et al. Reducing pressure valve with real gases: An integrated approach for the design[J]. Energy Procedia, 2018, 148: 607-614. doi: 10.1016/j.egypro.2018.08.148
    [9]
    CHEN F Q, REN X D, HU B, et al. Parametric analysis on multi-stage high pressure reducing valve for hydrogen decompression[J]. International Journal of Hydrogen Energy, 2019, 44(59): 31263-31274. doi: 10.1016/j.ijhydene.2019.10.004
    [10]
    FIL K U, ILIUKHIN V N, GRESHNIAKOV P I. Digital control system of gas pressure regulator[C]//2020 International Conference on Dynamics and Vibroacoustics of Machines (DVM). Piscataway: IEEE Press, 2020: 1-5.
    [11]
    SHIRATO Y, OHNISHI W, FUJIMOTO H, et al. Controller design of mass flow rate loop for high-precision pneumatic actuator[C]//2020 IEEE 16th International Workshop on Advanced Motion Control (AMC). Piscataway: IEEE Press, 2020: 40-45.
    [12]
    郭嘉博, 肖敏. 带安全阀功能的减压阀动态特性仿真与分析[J]. 机械工程与自动化, 2016(3): 58-60. https://www.cnki.com.cn/Article/CJFDTOTAL-SXJX201603023.htm

    GUO J B, XIAO M. Dynamic characteristic simulation and analysis of pressure regulator with relief valve's function[J]. Mechanical Engineering & Automation, 2016(3): 58-60(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-SXJX201603023.htm
    [13]
    滕浩, 石玉鹏, 张亮, 等. 基于AMESim减压阀动态特性仿真与试验研究[J]. 上海航天, 2015, 32(1): 48-53. https://www.cnki.com.cn/Article/CJFDTOTAL-SHHT201501011.htm

    TENG H, SHI Y P, ZHANG L, et al. Simulative and experimental study of dynamic characteristics of pressure relief valve based on AMESim[J]. Aerospace Shanghai, 2015, 32(1): 48-53(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-SHHT201501011.htm
    [14]
    栾飞舟, 王启权. 组合化减压阀设计与性能分析[C]//2016中国航空学会流体传动与控制学术会议, 2016: 225-228.

    LUAN F Z, WANG Q Q. Design and performance analysis of combined pressure reducing valve[C]//2016 Chinese Aeronautical Society Fluid Power Transmission and Control conference, 2016: 225-228(in Chinese).
    [15]
    郭新平, 汪成文, 刘华, 等. 基于扩张状态观测器的泵控电液伺服系统滑模控制[J]. 北京航空航天大学学报, 2020, 46(6): 1159-1168. doi: 10.13700/j.bh.1001-5965.2019.0418#viewType=Abstract

    GUO X P, WANG C W, LIU H, et al. Extended-state-observer based sliding mode control for pump-controlled electro-hydraulic servo system[J]. Journal of Beijing University of Aeronautics and Astronautics, 2020, 46(6): 1159-1168(in Chinese). doi: 10.13700/j.bh.1001-5965.2019.0418#viewType=Abstract
    [16]
    刘华, 汪成文, 郭新平, 等. 电液负载敏感位置伺服系统自抗扰控制方法[J]. 北京航空航天大学学报, 2020, 46(11): 2131-2139. doi: 10.13700/j.bh.1001-5965.2019.0569#viewType=Abstract

    LIU H, WANG C W, GUO X P, et al. Active disturbance rejection control method for position servo system based on electro-hydraulic load sensing[J]. Journal of Beijing University of Aeronautics and Astronautics, 2020, 46(11): 2131-2139(in Chinese). doi: 10.13700/j.bh.1001-5965.2019.0569#viewType=Abstract
    [17]
    中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. 减压阀一般要求: GB/T12244-2006[S]. 北京: 中国标准出版社, 2007.

    General Administration of Quality Suspervision, Inspection and Quarantine of the People's Republic of China, Standardization Administration of the People's Republic of China. General requirements for pressure reducing valves: GB/T 12244-2006[S]. Beijing: Standards Press of China, 2007(in Chinese).
    [18]
    张正春, 卢安乐, 郑张利, 等. 一种气体用核电减压阀: CN212004443U[P]. 2020-11-24.

    ZHANG Z C, LU A L, ZHENG Z L, et al. A kind of gas pressure reducer in nuclear power plant: CN212004443U[P]. 2020-11-24(in Chinese).
    [19]
    闫耀保, 赵艳培, HONGSON P. 锥型阀芯的高压气动减压阀设计分析[J]. 流体传动与控制, 2011(2): 1-5. https://www.cnki.com.cn/Article/CJFDTOTAL-LTCD201102003.htm

    YAN Y B, ZHAO Y P, HONGSON P. Analysis of a pneumatic high pressure reducing valve with throttle spool[J]. Fluid Power Transmission and Control, 2011(2): 1-5(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-LTCD201102003.htm
    [20]
    赵大磊, 于志远, 姚晓先. 气动减压阀的静动态特性计算[J]. 战术导弹控制技术, 2005(2): 84-87.

    ZHAO D L, YU Z Y, YAO X X. Computation of static and dynamic characteristics for pneumatic pressure regulator[J]. Tactical Missile Control Technology, 2005(2): 84-87(in Chinese).
    [21]
    李荣泉, 谢建蔚, 刘义. 精密气体减压阀的静态特性分析[J]. 流体传动与控制, 2014(4): 38-41. https://www.cnki.com.cn/Article/CJFDTOTAL-LTCD201404012.htm

    LI R Q, XIE J W, LIU Y. Static characteristic analysis of a precision pneumatic regulator[J]. Fluid Power Transmission and Control, 2014(4): 38-41(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-LTCD201404012.htm
    [22]
    尤裕荣, 曾维亮. 逆向卸荷式气体减压阀的静态特性分析[J]. 火箭推进, 2005, 31(4): 15-20. https://www.cnki.com.cn/Article/CJFDTOTAL-HJTJ200504003.htm

    YOU Y R, ZENG W L. Analysis on static characteristics of reverse balanced pressure reducing valve[J]. Journal of Rocket Propulsion, 2005, 31(4): 15-20(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HJTJ200504003.htm
    [23]
    尤裕荣, 曾维亮. 逆向卸荷式气体减压阀的动态特性仿真[J]. 火箭推进, 2006, 32(3): 24-30. https://www.cnki.com.cn/Article/CJFDTOTAL-HJTJ200603004.htm

    YOU Y R, ZENG W L. Simulation on reverse balanced pneumatic pressure reducing valve dynamic characteristic[J]. Journal of Rocket Propulsion, 2006, 32(3): 24-30(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HJTJ200603004.htm
    [24]
    罗强, 刘聪聪, 樊蕾, 等. 反向式气体减压阀静态特性仿真分析[J]. 阀门, 2015(3): 8-11. https://www.cnki.com.cn/Article/CJFDTOTAL-FAME201503004.htm

    LUO Q, LIU C C, FAN L, et al. Simulation analyses on static characteristics of reverse pressure reducing valve[J]. Valve, 2015(3): 8-11(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-FAME201503004.htm
    [25]
    罗强. 反向式气体减压阀静态和动态特性研究[D]. 哈尔滨: 哈尔滨工业大学, 2010.

    LUO Q. Study on static and dynamic characteristics of reverse pressure reducing valve[D]. Harbin: Harbin Institute of Technology, 2010(in Chinese).
    [26]
    顾存行, 毛虎平, 王强, 等. 基于AMESim的直动式减压阀动态特性仿真分析[J]. 机械设计与制造, 2017(5): 234-237. https://www.cnki.com.cn/Article/CJFDTOTAL-JSYZ201705062.htm

    GU C X, MAO H P, WANG Q, et al. Simulation analysis of direct-acting pressure reducing valves dynamic characteristics based on the AMESim[J]. Machinery Design & Manufacture, 2017(5): 234-237(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JSYZ201705062.htm
    [27]
    刘丽娇, 路波, 马云龙, 等. 国内气动减压阀产品检测结果分析[J]. 液压气动与密封, 2016, 36(2): 66-70. https://www.cnki.com.cn/Article/CJFDTOTAL-YYQD201602023.htm

    LIU L J, LU B, MA Y L, et al. Test result analysis of the domestic compressed air pressure regulator products[J]. Hydraulics Pneumatics & Seals, 2016, 36(2): 66-70(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-YYQD201602023.htm
    [28]
    邓欣爱. 一种低成本气动减压阀的设计与验证[D]. 北京: 北京工业大学, 2017.

    DENG X A. Designation and verification of a low-cost pressure reducing valve[D]. Beijing: Beijing University of Technology, 2017(in Chinese).
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(12)  / Tables(2)

    Article Metrics

    Article views(342) PDF downloads(203) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return