Volume 49 Issue 4
Apr.  2023
Turn off MathJax
Article Contents
LI J,LI Q,ZUO Y J,et al. Real-time performance analysis on Terahertz interconnection with timed token protocol in avionics[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(4):932-942 (in Chinese) doi: 10.13700/j.bh.1001-5965.2021.0317
Citation: LI J,LI Q,ZUO Y J,et al. Real-time performance analysis on Terahertz interconnection with timed token protocol in avionics[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(4):932-942 (in Chinese) doi: 10.13700/j.bh.1001-5965.2021.0317

Real-time performance analysis on Terahertz interconnection with timed token protocol in avionics

doi: 10.13700/j.bh.1001-5965.2021.0317
Funds:  National Natural Science Foundation of China (62071023)
More Information
  • Corresponding author: E-mail:avionics@buaa.edu.cn
  • Received Date: 10 Jun 2021
  • Accepted Date: 09 Aug 2021
  • Available Online: 02 Jun 2023
  • Publish Date: 15 Sep 2021
  • Using Terahertz communication technology to achieve centimeter level inter-board/chip interconnection in avionics can reduce pins and connectors, electronic equipment volume, and maintenance costs. For the short-range Terahertz communication network with omni-directional antenna transceiver and on-off keying (OOK) modulation, the calculation results of Terahertz channel capacity are given by analyzing the point-to-point communication link considering the molecular absorption noise and loss. Combined with the timed token multi-access protocol between nodes, and according to the channel capacity, the service curve model is used to analyze the total flow analysis (TFA) and separate flow analysis (SFA) in the worst case. The real-time performance analysis method of time limited token Terahertz interconnection is obtained by fully considering the burst degree of application layer communication task with probability guarantee. The case study shows that, compared with time division multiple access (TDMA), the collision free multiple access mechanism based on time limited token protocol can adapt to the random changes of physical layer capacity and application layer load, ensure less delay, and is conducive to the realization of Terahertz Interconnection Networking and real-time communication between avionics chips and boards.

     

  • loading
  • [1]
    The ASHLEY Steering Committee. ASHLEY—The project [EB/OL]. (2018-03-18) [2020-03-05]. http://www. ashleyproject.eu.
    [2]
    GU Q J. THz interconnect: The last centimeter communication[J]. IEEE Communications Magazine, 2015, 53(4): 206-215. doi: 10.1109/MCOM.2015.7081096
    [3]
    LEE Y S. Principles of Terahertz science and technology[M]. Berlin: Springer, 2009: 3.
    [4]
    CHEN Y, HAN C. Channel modeling and characterization for wireless networks-on-chip communications in the millimeter wave and Terahertz bands[J]. IEEE Transactions on Molecular, Biological and Multi-Scale Communications, 2019, 5(1): 30-43. doi: 10.1109/TMBMC.2019.2952863
    [5]
    ELAYAN H, AMIN O, SHIHADA B, et al. Terahertz band: The last piece of RF spectrum puzzle for communication systems[J]. IEEE Open Journal of the Communications Society, 2019, 1: 1-32.
    [6]
    PARK J D, KANG S, THYAGARAJAN S V, et al. A 260 GHz fully integrated CMOS transceiver for wireless chip-to-chip communication[C]//2012 Symposium on VLSI Circuits. Piscataway: IEEE Press, 2012: 48-49.
    [7]
    LEE S, HARA S, YOSHIDA T, et al. An 80-Gb/s 300-GHz-band single-chip CMOS transceiver[J]. IEEE Journal of Solid-State Circuits, 2019, 54(12): 3577-3588. doi: 10.1109/JSSC.2019.2944855
    [8]
    JORNET J M, AKYILDIZ I F. Channel modeling and capacity analysis for electromagnetic wireless nanonetworks in the Terahertz band[J]. IEEE Transactions on Wireless Communications, 2011, 10(10): 3211-3221. doi: 10.1109/TWC.2011.081011.100545
    [9]
    KOKKONIEMI J, LEHTOMÄKI J, JUNTTI M. A discussion on molecular absorption noise in the Terahertz band[J]. Nano Communication Networks, 2016, 8: 35-45. doi: 10.1016/j.nancom.2015.11.001
    [10]
    GHAFOOR S, BOUJNAH N, REHMANI M H, et al. MAC protocols for Terahertz communication: A comprehensive survey[J]. IEEE Communications Surveys & Tutorials, 2020, 22(4): 2236-2282.
    [11]
    ALSHEIKH R, AKKARI N, FADEL E. Grid based energy-aware MAC protocol for wireless nanosensor network[C]//2016 8th IFIP International Conference on New Technologies, Mobility and Security (NTMS). Piscataway: IEEE Press, 2016: 1-5.
    [12]
    LEMIC F, ABADAL S, TAVERNIER W, et al. Survey on Terahertz nanocommunication and networking: A top-down perspective[J]. IEEE Journal on Selected Areas in Communications, 2021, 39(6): 1506-1543. doi: 10.1109/JSAC.2021.3071837
    [13]
    STRAITON A. The absorption and reradiation of radio waves by oxygen and water vapor in the atmosphere[J]. IEEE Transactions on Antennas and Propagation, 1975, 23(4): 595-597. doi: 10.1109/TAP.1975.1141104
    [14]
    JORNET J M, PUJOL J C, PARETA J S. PHLAME: A physical layer aware MAC protocol for electromagnetic nanonetworks[J]. Nano Communication Networks, 2012, 3(1): 74-81. doi: 10.1016/j.nancom.2012.01.006
    [15]
    李峭, 李佳, 熊华钢, 等. 航空电子微距太赫兹互连DRR访问容量分析[J]. 航空学报, 2021, 42(6): 624082.

    LI Q, LI J, XIONG H G, et al. Accessing capacity of deficit round-robin (DRR) in avionics very-short range THz interconnections[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(6): 624082(in Chinese).
    [16]
    中国航天工业第一集团公司. 线性令牌传递多路数据总线: GJB 8585—2015[S]. 北京: 总装备部军标出版发行部, 2016: 9-10.

    Aviation Industry Corporation of China. Linear token passing multiple data bus: GJB 8585—2015[S]. Beijing: Department of General Equipment Department of Military Standard Publishing, 2016: 9-10(in Chinese).
    [17]
    LE BOUDEC J Y, THIRAN P. Network calculus: A theory of deterministic queuing systems for the internet[M]. Berlin: Springer, 2001: 27-55.
    [18]
    PIESIEWICZ R, KLEINE-OSTMANN T, KRUMBHOLZ N, et al. Short-range ultra-broadband terahertz communications: Concepts and perspectives[J]. IEEE Antennas and Propagation Magazine, 2007, 49(6): 24-39. doi: 10.1109/MAP.2007.4455844
    [19]
    ZHU N, ZIOLKOWSKI R W. Photoconductive THz antenna designs with high radiation efficiency, high directivity, and high aperture efficiency[J]. IEEE Transactions on Terahertz Science and Technology, 2013, 3(6): 721-730. doi: 10.1109/TTHZ.2013.2285568
    [20]
    仇佩亮, 陈惠芳, 谢磊. 数字通信基础[M]. 北京: 电子工业出版社, 2007: 242-245.

    QIU P L, CHEN H F, XIE L. Fundamentals of digital communications[M]. Beijing: Publishing House of Electronics Industry, 2007: 242-245(in Chinese).
    [21]
    International Telecommunication Union. Calculation of free-space attenuation: ITU-R P. 525[S]. Geneva: International Telecommunication Union, 2019.
    [22]
    GOODY R M, YUNG Y L. Atmospheric radiation: Theoretical basis[M]. 2nd ed. Oxford: Oxford University Press, 1989: 15-17.
    [23]
    ROTHMAN L S, GORDON I E, BARBE A, et al. The HITRAN 2008 molecular spectroscopic database[J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 2009, 110(9-10): 533-572. doi: 10.1016/j.jqsrt.2009.02.013
    [24]
    JORNET J M, AKYILDIZ I F. Channel capacity of electromagnetic nanonetworks in the Terahertz band[C]//2010 IEEE International Conference on Communications. Piscataway: IEEE Press, 2010: 1-6.
    [25]
    熊华钢, 罗志强, 张其善. 线性令牌传递网络在严格实时条件下的带宽分配方法[J]. 通信学报, 1997, 18(12): 25-31.

    XIONG H G, LUO Z Q, ZHANG Q S. Bandwidth allocation for LTPB network under real time condition[J]. Journal of China Institute of Communications, 1997, 18(12): 25-31(in Chinese).
    [26]
    DANG D K, MIFDAOUI A, GAYRAUD T. Design and analysis of UWB-based network for reliable and timely communications in safety-critical avionics[C]//2014 10th IEEE Workshop on Factory Communication Systems. Piscataway: IEEE Press, 2014: 1-10.
    [27]
    WANDELER E. Modular performance analysis and interface-based design for embedded real-time systems[D]. Zurich: Shaker Verlag Eidgenössische Technische Hochschule Zürich, 2006: 35-49.
    [28]
    KOPETZ H. Real-time systems: Design principles for distributed embedded applications[M]. Berlin: Springer, 2011: 154-158.
    [29]
    CHERNOFF H. A measure of asymptotic efficiency for tests of a hypothesis based on the sum of observations[J]. The Annals of Mathematical Statistics, 1952, 23(4): 493-507. doi: 10.1214/aoms/1177729330
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(11)  / Tables(7)

    Article Metrics

    Article views(135) PDF downloads(12) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return