The present article attempts a more comprehensive review of recent literature in the broader area of mechanically fastened polymer-matrix composite joints with protruding-head bolts. The article begins with a review of the mechanical configurations of composite joints. A study of the mechanical configurations of composite joints opens the topic. This is followed by a discussion of the failure progression of composite joints in tensile loading. The remaining sections are devoted to the influence of composite properties (fiber type, reinforcement structure, fiber and metal mixed laminates, ply angle and proportion, curing process, initial material defects), fastener performance (fastener stiffness, bolt head type, bolt diameter, thread seal, gap fit, interference fit, fastener missing), connection plate performance, lateral constraints (tightening moment,bearing area, compensation gasket, contact surface friction factors), geometric effects (composite plate size, plate thickness to hole diameter ratio, specimen width to hole diameter ratio, hole end distance to hole diameter ratio, hole shape, hole quality, hole position error) as well as loads (static load, dynamic load, fatigue load, creep, relaxation, warm and wet load) on joint strength and failure. Finally, comments are offered regarding the most important remaining problems in this area, along with recommendations for future work.