Volume 49 Issue 4
Apr.  2023
Turn off MathJax
Article Contents
CUI K K,HAN W,LIU Y J,et al. Automatic wave-off control algorithm for carrier aircraft based on DM-DSC[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(4):900-912 (in Chinese) doi: 10.13700/j.bh.1001-5965.2021.0362
Citation: CUI K K,HAN W,LIU Y J,et al. Automatic wave-off control algorithm for carrier aircraft based on DM-DSC[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(4):900-912 (in Chinese) doi: 10.13700/j.bh.1001-5965.2021.0362

Automatic wave-off control algorithm for carrier aircraft based on DM-DSC

doi: 10.13700/j.bh.1001-5965.2021.0362
Funds:  National Natural Science Foundation of China (62003366)
More Information
  • Corresponding author: E-mail:liuyexiaobao@163.com
  • Received Date: 30 Jun 2021
  • Accepted Date: 30 Sep 2021
  • Available Online: 02 Jun 2023
  • Publish Date: 02 Nov 2021
  • In this paper, a deviation model dynamic surface control algorithm (DM-DSC) is designed for automatic wave-off control of carrier aircraft when the optimal wave-off trajectory is available. Firstly, the optimal wave-off trajectory is given based on Radau pseudospectral method. Furthermore, according to the optimal wave-off trajectory and the corresponding control scheme, the deviation control models and Backstepping controllers of the velocity subsystem and altitude subsystem are given respectively. Then the dynamic surface structure is introduced to obtain the differential signal of the virtual control variable, and at the same time, the “differential expansion” problem in Backstepping control is avoided. Then, in order to acquire the differential signal of the virtual control variable and simultaneously avoid the "differential expansion" problem in Backstepping control, the dynamic surface structure is introduced. Considering the uncertainty of aerodynamic parameters and the disturbance of carrier air wake, the linear extended state observer (LESO) is used to estimate and compensate for the disturbance in the control model, and the anti-saturation auxiliary structure is introduced to suppress the influence of control saturation on the controller performance. Finally, the boundedness of the closed-loop system is proved based on the Lyapunov method. The comparative simulation results demonstrate that the DM-DSC algorithm has good control performance.

     

  • loading
  • [1]
    焦晓辉, 陈胜杰, 王晓江. 舰载机复飞决策研究[J]. 航空科学技术, 2016, 27(8): 41-46.

    JIAO X H, CHEN S J, WANG X J. Research on wave-off decision of carrier-based aircraft[J]. Aeronautical Science & Technology, 2016, 27(8): 41-46(in Chinese).
    [2]
    沈宏良, 龚正. 舰载飞机复飞决策与操纵研究[J]. 飞行力学, 2008, 26(5): 5-9.

    SHEN H L, GONG Z. Research on wave-off decision and control for carrier aircraft[J]. Flight Dynamics, 2008, 26(5): 5-9(in Chinese).
    [3]
    焦鑫, 江驹, 王新华, 等. 舰载机综合复飞决策研究[J]. 飞行力学, 2012, 30(5): 405-409.

    JIAO X, JIANG J, WANG X H, et al. Research on comprehensive wave-off decision of carrier-based aircraft[J]. Flight Dynamics, 2012, 30(5): 405-409(in Chinese).
    [4]
    曲志刚. 基于小扰动动力学模型的舰载机复飞决策系统研究[J]. 青岛大学学报, 2010, 23(4): 52-56.

    QU Z G. Wave-off decision system based on small disturbance dynamics model[J]. Journal of Qingdao University, 2010, 23(4): 52-56(in Chinese).
    [5]
    王宝宝, 龚华军, 王新华, 等. 舰载机智能复飞决策技术研究[J]. 飞行力学, 2010, 28(2): 42-45.

    WANG B B, GONG H J, WANG X H, et al. Study on intelligent wave-off decision techniques of carrier aircraft[J]. Flight Dynamics, 2010, 28(2): 42-45(in Chinese).
    [6]
    杜洁. 舰载机复飞决策及操纵策略研究[D]. 南京: 南京航空航天大学, 2015: 39-47.

    DU J. Research on wave-off decision and manipulation strategy of carrier-based aircraft[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2015: 39-47(in Chinese).
    [7]
    HU Q L, MENG Y, WANG C L, et al. Adaptive backstepping control for air-breathing hypersonic vehicles with input nonlinearities[J]. Aerospace Science and Technology, 2018, 73: 289-299. doi: 10.1016/j.ast.2017.12.001
    [8]
    路遥. 基于跟踪微分器的高超声速飞行器Backstepping控制[J]. 航空学报, 2021, 42(11): 324737.

    LU Y. Backstepping control for hypersonic flight vehicles based on tracking differentiator[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(11): 324737(in Chinese).
    [9]
    YU C J, JIANG J, ZHEN Z Y, et al. Adaptive backstepping control for air-breathing hypersonic vehicle subject to mismatched uncertainties[J]. Aerospace Science and Technology, 2020, 107: 106244. doi: 10.1016/j.ast.2020.106244
    [10]
    ZHANG S, WANG Q, DONG C Y. A novel adaptive dynamic surface control scheme of hypersonic flight vehicles with thrust and actuator constraints[J]. Transactions of the Institute of Measurement and Control, 2018, 40(4): 1362-1374. doi: 10.1177/0142331217690223
    [11]
    DONG C Y, LIU Y, WANG Q. Barrier lyapunov function based adaptive finite-time control for hypersonic flight vehicles with state constraints[J]. ISA Transactions, 2020, 96: 163-176. doi: 10.1016/j.isatra.2019.06.011
    [12]
    王肖, 郭杰, 唐胜景, 等. 吸气式高超声速飞行器鲁棒非奇异Terminal滑模反步控制[J]. 航空学报, 2017, 38(3): 320287.

    WANG X, GUO J, TANG S J, et al. Robust nonsingular terminal sliding mode backstepping control for air-breathing hypersonic vehicles[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(3): 320287(in Chinese).
    [13]
    ZHANG X Y, ZONG Q, DOU L Q, et al. Improved finite-time command filtered backstepping fault-tolerant control for flexible hypersonic vehicle[J]. Journal of the Franklin Institute, 2020, 357(13): 8543-8565. doi: 10.1016/j.jfranklin.2020.05.017
    [14]
    LIANG S, XU B, REN J R. Kalman-filter-based robust control for hypersonic flight vehicle with measurement noises[J]. Aerospace Science and Technology, 2021, 112: 106566. doi: 10.1016/j.ast.2021.106566
    [15]
    AN H, WANG C H, FIDAN B. Sliding mode disturbance observer-enhanced adaptive control for the air-breathing hypersonic flight vehicle[J]. Acta Astronautica, 2017, 139: 111-121. doi: 10.1016/j.actaastro.2017.06.026
    [16]
    HE N B, GAO Q, GUTIERREZ H, et al. Robust adaptive dynamic surface control for hypersonic vehicles[J]. Nonlinear Dynamics, 2018, 93(3): 1109-1120. doi: 10.1007/s11071-018-4248-4
    [17]
    路遥, 董朝阳, 王青. 高超声速飞行器自适应反步控制器设计[J]. 航空学报, 2015, 36(3): 970-978.

    LU Y, DONG C Y, WANG Q. Adaptive backstepping controller design for hypersonic vehicle[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(3): 970-978(in Chinese).
    [18]
    LEE S, KIM Y, LEE Y, et al. Robust-backstepping missile autopilot design considering time-varying parameters and uncertainty[J]. IEEE Transactions on Aerospace and Electronic Systems, 2020, 56(6): 4269-4287. doi: 10.1109/TAES.2020.2990819
    [19]
    刘敏, 徐世杰, 韩潮. 挠性航天器的退步直接自适应姿态跟踪控制[J]. 航空学报, 2012, 33(9): 1697-1705.

    LIU M, XU S J, HAN C. Direct adaptive attitude tracking control of flexible spacecraft based on backstepping method[J]. Acta Aeronautica et Astronautica Sinica, 2012, 33(9): 1697-1705(in Chinese).
    [20]
    LIAN B H, BANG H. Momentum transfer-based attitude control of spacecraft with backstepping[J]. IEEE Transactions on Aerospace and Electronic Systems, 2006, 42(2): 453-463. doi: 10.1109/TAES.2006.1642563
    [21]
    FAN Y G, LUTZE F H, CLIFF E M. Time-optimal lateral maneuvers of an aircraft[J]. Journal of Guidance, Control, and Dynamics, 1995, 18(5): 1106-1112. doi: 10.2514/3.21511
    [22]
    GARG D, PATTERSON M, HAGER W W, et al. A unified framework for the numerical solution of optimal control problems using pseudospectral methods[J]. Automatica, 2010, 46(11): 1843-1851. doi: 10.1016/j.automatica.2010.06.048
    [23]
    蔡伟伟. 空天飞行器轨迹规划与控制研究[D]. 长沙: 国防科学技术大学, 2015: 20-35.

    CAI W W. Trajectory planning and control for aerospace vehicles[D]. Changsha: National University of Defense Technology, 2015: 20-35(in Chinese).
    [24]
    LU Y. Disturbance observer-based backstepping control for hypersonic flight vehicles without use of measured flight path angle[J]. Chinese Journal of Aeronautics, 2021, 34(2): 396-406. doi: 10.1016/j.cja.2020.09.053
    [25]
    董朝阳, 路遥, 王青. 高超声速飞行器指令滤波反演控制[J]. 宇航学报, 2016, 37(8): 957-963.

    DONG C Y, LU Y, WANG Q. Command filtered backstepping control for hypersonic vehicle[J]. Journal of Astronautics, 2016, 37(8): 957-963(in Chinese).
    [26]
    程春华, 胡云安, 吴进华. 非仿射纯反馈非线性系统的自抗扰控制[J]. 自动化学报, 2014, 40(7): 1528-1536.

    CHENG C H, HU Y A, WU J H. Auto disturbance controller of non-affine nonlinear pure feedback systems[J]. Acta Automatica Sinica, 2014, 40(7): 1528-1536(in Chinese).
    [27]
    吴超, 王浩文, 张玉文, 等. 基于LADRC的无人直升机轨迹跟踪[J]. 航空学报, 2015, 36(2): 473-483.

    WU C, WANG H W, ZHANG Y W, et al. LADRC-based trajectory tracking for unmanned helicopter[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(2): 473-483(in Chinese).
    [28]
    陈增强, 孙明玮, 杨瑞光. 线性自抗扰控制器的稳定性研究[J]. 自动化学报, 2013, 39(5): 574-580.

    CHEN Z Q, SUN M W, YANG R G. On the stability of linear active disturbance rejection control[J]. Acta Automatica Sinica, 2013, 39(5): 574-580(in Chinese).
    [29]
    ZHENG Q, GAOL L Q, GAO Z Q. On stability analysis of active disturbance rejection control for nonlinear time-varying plants with unknown dynamics[C]// 2007 46th IEEE Conference on Decision and Control. Piscataway: IEEE Press, 2008: 3501-3506.
    [30]
    张智, 朱齐丹, 张雯. 航母舰载机全自动引导着舰技术[M]. 哈尔滨: 哈尔滨工程大学出版社, 2016: 44-53.

    ZHANG Z, ZHU Q D, ZHANG W. Automatic guided landing technology for carrier aircraft[M]. Harbin: Harbin Engineering University Press, 2016: 44-53(in Chinese).
    [31]
    程志强, 朱纪洪, 袁夏明, 等. 推力矢量垂直短距飞机轨迹优化与控制[J]. 控制理论与应用, 2020, 37(1): 38-46. doi: 10.7641/CTA.2019.80515

    CHENG Z Q, ZHU J H, YUAN X M, et al. Trajectory optimization and control design for transition of thrust-vectored vertical and/or short take-off and landing aircraft[J]. Control Theory & Applications, 2020, 37(1): 38-46(in Chinese). doi: 10.7641/CTA.2019.80515
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(14)  / Tables(1)

    Article Metrics

    Article views(339) PDF downloads(34) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return