Volume 49 Issue 4
Apr.  2023
Turn off MathJax
Article Contents
ZHANG C,HUANG Y Z,WANG C J,et al. Simultaneous measurement of size and velocity of burning particles based on light field imaging[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(4):949-956 (in Chinese) doi: 10.13700/j.bh.1001-5965.2021.0334
Citation: ZHANG C,HUANG Y Z,WANG C J,et al. Simultaneous measurement of size and velocity of burning particles based on light field imaging[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(4):949-956 (in Chinese) doi: 10.13700/j.bh.1001-5965.2021.0334

Simultaneous measurement of size and velocity of burning particles based on light field imaging

doi: 10.13700/j.bh.1001-5965.2021.0334
Funds:  National Natural Science Foundation of China (51976038); The Fundamental Research Funds for the Central Universities (3203002101C3)
More Information
  • Corresponding author: E-mail:chuanlongxu@seu.edu.cn
  • Received Date: 16 Jun 2021
  • Accepted Date: 13 Sep 2021
  • Available Online: 02 Jun 2023
  • Publish Date: 16 Sep 2021
  • To characterize the dynamic combustion behavior of metal fuel in solid propellants, a simultaneous measurement method for the burning particle size and velocity based on light field imaging is proposed in this paper. A light field imaging system is established and the burning metal particles are imaged by the light field imaging system. The refocusing images of the burning particles are further obtained through refocusing algorithm. The calibrations of the light field system are carried out and the relationship curve between the depth and the optimal refocusing parameter is determined. The image segmentation algorithm is used to identify and locate the particles in the refocused image and then the particle sizes of the burning particles are calculated. Following the identification and localization of the particles in the refocused image using the image segmentation technique, the burning particle sizes are determined. The trajectories and velocities of particles are reconstructed through 3D particle tracking technology. Experimental results illustrated that the light field imaging technology is capable of making 3D measurements of the size and velocity of the burning particles of metal fuel, and characterizing the combustion process of metal particles. The results of the experiments showed that the light field imaging technique is able to characterize the combustion process of metal particles and make 3D measurements of the size and velocity of the burning metal fuel particles.

     

  • loading
  • [1]
    王世光, 蒋太飞, 田义宏. 飞航导弹固体火箭发动机技术进展[J]. 飞航导弹, 2006(6): 47-50.

    WANG S G, JIANG T F, TIAN Y H. Technical progress of flying missile solid rocket motor[J]. Winged Missiles Journal, 2006(6): 47-50(in Chinese).
    [2]
    刘佩进, 金秉宁, 李强. 战术导弹固体发动机燃烧不稳定研究概述[J]. 固体火箭技术, 2012, 35(4): 446-449.

    LIU P J, JIN B N, LI Q. Asurvey of combustion instability in tactical SRM[J]. Journal of Solid Rocket Technology, 2012, 35(4): 446-449(in Chinese).
    [3]
    刘鑫. 基于光学拍摄技术的含铝固体推进剂燃面处铝团聚研究[D]. 西安: 西北工业大学, 2016: 1-3.

    LIU X. Investigation on aluminum agglomeration on the burning surface of solid propellants by optical observation technology[D]. Xi’an: Northwestern Polytechnical University, 2016: 1-3(in Chinese) .
    [4]
    张宏安, 叶定友, 侯晓. 固体火箭发动机凝聚相微粒分布研究现状[J]. 固体火箭技术, 2000(3): 25-28. doi: 10.3969/j.issn.1006-2793.2000.03.006

    ZHANG H A, YE D Y, HOU X. Recent status of research on condensed-phase particles distribution in solid rocket motor[J]. Journal of Solid Rocket Technology, 2000(3): 25-28(in Chinese). doi: 10.3969/j.issn.1006-2793.2000.03.006
    [5]
    BALLEREAU S, GODFROY F, ORLANDI O, et al. Numerical simulations and searching methods of thrust oscillations for solid rocket motors[C]//42nd AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit. Reston: AIAA, 2006.
    [6]
    姚龙超. 数字全息颗粒燃烧与液滴雾化测量方法与应用[D]. 杭州: 浙江大学, 2019: 1-7.

    YAO L C. Digital holographic method and application to measurement of particle combustion and droplet atomization[D]. Hangzhou: Zhejiang University, 2019: 1-7 (in Chinese).
    [7]
    金秉宁, 王志新, 刘佩进, 等. 同轴数字全息用于铝燃烧颗粒的测量研究[J]. 推进技术, 2019, 40(6): 1399-1408. doi: 10.13675/j.cnki.tjjs.180371

    JIN B N, WANG Z X, LIU P J, et al. Measurement of particle size of aluminum combustion in solid propellant using digital In-line holography[J]. Journal of Propulsion Technology, 2019, 40(6): 1399-1408(in Chinese). doi: 10.13675/j.cnki.tjjs.180371
    [8]
    刘鑫, 刘佩进, 关昱, 等. 复合推进剂中铝的燃烧实验研究方法[J]. 固体火箭技术, 2015, 38(6): 833-836.

    LIU X, LIU P J, GUAN Y, et al. Experiment research method of the aluminum in the composite propellant[J]. Journal of Solid Rocket Technology, 2015, 38(6): 833-836(in Chinese).
    [9]
    张韶辉, 胡摇, 曹睿, 等. 光场成像原理及应用技术[J]. 兵器装备工程学报, 2020, 41(2): 178-186. doi: 10.11809/bqzbgcxb2020.02.037

    ZHANG S H, HU Y, CAO R, et al. Principle and applications of light field imaging[J]. Journal of Ordnance Equipment Engineering, 2020, 41(2): 178-186(in Chinese). doi: 10.11809/bqzbgcxb2020.02.037
    [10]
    刘慧芳, 周骛, 蔡小舒, 等. 基于光场成像的三维粒子追踪测速技术[J]. 光学学报, 2020, 40(1): 219-229.

    LIU H F, ZHOU W, CAI X S, et al. Three-dimensional particle tracking velocimetry based on light field imaging[J]. Acta Optica Sinica, 2020, 40(1): 219-229(in Chinese).
    [11]
    GERSHUN A. The light field[J]. Journal of Mathematics and Physics, 1939, 18(1-4): 51-151. doi: 10.1002/sapm193918151
    [12]
    ADELSON E, BERGEN J. The plenoptic function and the elements of early vision[C]//Computational Models of Visual Processing. Cambridge: MIT Press, 1991: 3-20.
    [13]
    LEVOY M, HANRAHAN P. Light field rendering[C]//Proceedings of the 23rd Annual Conference on Computer Graphics and Interactive Techniques. New York: ACM, 1996: 31-42.
    [14]
    NG R, LEVOY M, BREDIF M, et al. Light field photography with a hand-held plenoptic camera[J]. Computer Science Technical Report CSTR, 2005, 2(11): 1-11.
    [15]
    刘欣城. 基于光场测量的成像技术研究[D]. 成都: 中国科学院大学, 2019: 4-7.

    LIU X C. Research on imaging technology based on light field measurement[D]. Chengdu: University of Chinese Academy of Sciences, 2019: 4-7(in Chinese).
    [16]
    张丽, 李潇, 吴皓天, 等. 基于最大类间方差的图像分割算法研究[J]. 科技创新与应用, 2021(8): 39-41.

    ZHANG L, LI X, WU H T, et al. Research on image segmentation algorithm based on maximum variance between classes[J]. Technology Innovation and Application, 2021(8): 39-41(in Chinese).
    [17]
    王鸿南, 钟文, 汪静, 等. 图像清晰度评价方法研究[J]. 中国图象图形学报, 2004, 9(7): 828-831. doi: 10.3969/j.issn.1006-8961.2004.07.011

    WANG H N, ZHONG W, WANG J, et al. Research of measurement for digital image definition[J]. Journal of Image and Graphics, 2004, 9(7): 828-831(in Chinese). doi: 10.3969/j.issn.1006-8961.2004.07.011
    [18]
    王金岩, 史文华, 敬忠良. 基于Depth from Focus的图像三维重建[J]. 南京航空航天大学学报, 2007, 39(2): 181-186. doi: 10.3969/j.issn.1005-2615.2007.02.009

    WANG J Y, SHI W H, JING Z L. 3D recontructing of image based on depth from focus[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2007, 39(2): 181-186(in Chinese). doi: 10.3969/j.issn.1005-2615.2007.02.009
    [19]
    胡文洁. 三维火焰流场中粒子重构与跟踪测速的研究[D]. 西安: 西安电子科技大学, 2017: 33-39.

    HU W J. Study on 3-D reconstruction and particle tracking velocimetry in flame flow[D]. Xi’an: Xidian University, 2017: 33-39(in Chinese) .
    [20]
    OHMI K, LI H Y. Particle-tracking velocimetry with new algorithms[J]. Measurement Science and Technology, 2000, 11(6): 603-616. doi: 10.1088/0957-0233/11/6/303
    [21]
    LIU Y D, HOSSAIN M M, SUN J. Design a cage-typed light field camera system for flame measurement[C]//IEEE SENSORS 2017. Glasgow: Institute of Electrical and Electronics Engineers , 2017.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(12)

    Article Metrics

    Article views(170) PDF downloads(22) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return