Volume 49 Issue 4
Apr.  2023
Turn off MathJax
Article Contents
FENG Y W,ZHANG J L,XUE X F,et al. Structural design and analysis of leading edge slat interference trailing edge[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(4):761-767 (in Chinese) doi: 10.13700/j.bh.1001-5965.2021.0353
Citation: FENG Y W,ZHANG J L,XUE X F,et al. Structural design and analysis of leading edge slat interference trailing edge[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(4):761-767 (in Chinese) doi: 10.13700/j.bh.1001-5965.2021.0353

Structural design and analysis of leading edge slat interference trailing edge

doi: 10.13700/j.bh.1001-5965.2021.0353
Funds:  National Natural Science Foundation of China (51875465)
More Information
  • Corresponding author: E-mail:zhangjiale_work@163.com
  • Received Date: 29 Jun 2021
  • Accepted Date: 26 Sep 2021
  • Available Online: 02 Jun 2023
  • Publish Date: 09 Oct 2021
  • The leading edge slat is an important lift increasing device in the take-off and landing stages of large aircraft. But affected by its own body stiffness and support stiffness, the slat is prone to warpage and deformation under aerodynamic load, resulting in gaps with the wing box, which affects the aerodynamic efficiency of the wing. To eliminate the deformation of slat in cruise and improve the aerodynamic efficiency of the wing, the leading edge slat interference trailing edge structural design technology is proposed in this paper. Firstly, the main factors affecting the normal and chord deformation of slat structure are theoretically analyzed. Then, taking the leading edge slat of a large domestic aircraft as the research object, the influence of skin and other structural dimensions on the stiffness of slat body is discussed in detail from two aspects of weight and deformation. Finally, on the premise of maintaining the size and weight of the original slat structure, the leading edge slat interference trailing edge structure is designed. The results show that the proposed interference trailing edge structure can maintain the state of non separation from the wing under the aerodynamic load of cruise condition, improve the aerodynamic performance, and effectively avoid the increase of weight.

     

  • loading
  • [1]
    翟晨. 大型高抗浪水陆两栖飞机增升装置设计[D]. 南京: 南京航空航天大学, 2019: 3-5.

    ZHAI C. Aerodynamic design of high-lift devices for a large-scale amphibious aircraft[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2019: 3-5(in Chinese).
    [2]
    李正洲. 某型客机增升装置的气动/机构优化设计[D]. 南京: 南京航空航天大学, 2013: 1-5.

    LI Z Z. Aero-mechanical optimization design of a civil aircraft’s high-lift system[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2013: 1-5(in Chinese).
    [3]
    刘明. 支线客机增升装置气动分析与优化设计[D]. 南京: 南京航空航天大学, 2012: 3-5.

    LIU M. Aerodynamic analysis and optimization design of regional jet’s high-lift device[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2012: 3-5(in Chinese).
    [4]
    《飞机设计手册》总编委会. 飞机设计手册. 第9册[M]. 北京: 航空工业出版社, 2002: 428-428.

    General Editorial Board of Aircraft Design Manual. Aircraft design manual. Volume 9[M]. Beijing: Aviation Industry Press, 2002: 428-429(in Chinese).
    [5]
    RECKZEH D. Aerodynamic design of the high-lift-wing for a Megaliner aircraft[J]. Aerospace Science and Technology, 2003(2): 107-119.
    [6]
    DIMINO I, AMENDOLA G, AMOROSO F, et al. Morphing technologies: Adaptive ailerons[J/OL]. Recent Progress in Some Aircraft Technologies, 2016(2016-09-08)[2021-06-01]. https://www.intechopen.com/chapters/50748.
    [7]
    仪志胜, 何景武. 民用飞机后缘襟翼机构设计仿真计算研究[J]. 飞机设计, 2010, 30(1): 43-46. doi: 10.3969/j.issn.1673-4599.2010.01.010

    YI Z S, HE J W. Mechanical design and research of trailing edge flap for civil aircraft[J]. Aircraft Design, 2010, 30(1): 43-46(in Chinese). doi: 10.3969/j.issn.1673-4599.2010.01.010
    [8]
    FRANCOIS C, EDMUND K. Actuation system for deploying high-lift device on leading edge of aircraft wing: U. S. Patent WO2009056873-A1[P]. 2010-07-29.
    [9]
    POTT-POLLENSKE M, WILD J W, BERTSCH L. Aerodynamic and acoustic design of silent leading edge device: AIAA 2014-2076[R]. Reston: AIAA, 2014.
    [10]
    PAGANI C C, SOUZA D S, MEDEIROS M A F. Experimental investigation on the effect of slat geometrical configurations on aerodynamic noise[J]. Journal of Sound and Vibration, 2017, 394: 256-279. doi: 10.1016/j.jsv.2017.01.013
    [11]
    杨小权, 丁珏, 翁培奋, 等. 大型客机增升装置前缘缝翼噪声波纹控制技术[C]//中国航空学会声学分会2020年度学术交流会, 2020: 46.

    YANG X Q, DING Y, WONG P F, et al. Noise ripple control technology for leading edge slats of lift augmenter for large passenger aircraft[C]//Academic Exchange Meeting of Acoustics Branch of CAAC in 2020, 2020: 46(in Chinese).
    [12]
    邓一菊, 廖振荣, 段卓毅. 前缘缝翼内型的气动设计研究[J]. 空气动力学学报, 2014, 32(3): 400-404.

    DENG Y J, LIAO Z R, DUAN Z Y. The aerodynamic design research on slat coves[J]. Acta Aerodynamica Sinica, 2014, 32(3): 400-404(in Chinese).
    [13]
    OLSON L E, MCGOWAN P R, GUEST C J, et al. Leading-edge slat optimization for maximum airfoil lift[R]. [S.l.]: NASA Technical Memorandum, 1979.
    [14]
    王红建, 田峻源, 罗望. 缝翼结构参数对缝翼噪声影响的三维仿真分析[J]. 西北工业大学学报, 2019, 37(6): 1129-1137. doi: 10.3969/j.issn.1000-2758.2019.06.006

    WANG H J, TIAN J Y, LUO W. Three-dimensional simulation analysis of the influence of slat structural parameters on slat aerodynamic noise[J]. Journal of Northwestern Polytechnical University, 2019, 37(6): 1129-1137(in Chinese). doi: 10.3969/j.issn.1000-2758.2019.06.006
    [15]
    钟园, 陈勇, 陈真利, 等. 翼身融合布局低速验证机前缘缝翼设计[J]. 航空学报, 2019, 40(9): 623050.

    ZHONG Y, CHEN Y, CHEN Z L, et al. Design of slat of blended-wing-body low speed testing aircraft[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(9): 623050(in Chinese).
    [16]
    WANG C, KHODAPARAST H H, FRISWELL M I, et al. Conceptual-level evaluation of a variable stiffness skin for a morphing wing leading edge[J]. Proceedings of the Institution of Mechanical Engineers, Part G:Journal of Aerospace Engineering, 2019, 233(15): 5703-5716. doi: 10.1177/0954410019855576
    [17]
    何志全. 某型飞机前缘缝翼蒙皮厚度优化[J]. 江苏科技信息, 2015(21): 54-56. doi: 10.3969/j.issn.1004-7530.2015.21.019

    HE Z Q. Optimization on slat skin thickness of a certain type of aircraft[J]. Jiangsu Science & Technology Information, 2015(21): 54-56(in Chinese). doi: 10.3969/j.issn.1004-7530.2015.21.019
    [18]
    张振辉, 李栋, 杨茵. 基于前缘缝翼微型后缘装置的多段翼型被动流动控制[J]. 航空学报, 2017, 38(5): 120650.

    ZHANG Z H, LI D, YANG Y. Passive flow control of multi-element airfoils using slat mini-trailing edge device[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(5): 120650(in Chinese).
    [19]
    许可, 章荣平, 张刘, 等. 大飞机缝翼滑轨影响研究[J]. 空气动力学学报, 2016, 34(3): 368-372.

    XU K, ZHANG R P, ZHANG L, et al. Research on influence of slat brackets of large airplane[J]. Acta Aeronautica Sinica, 2016, 34(3): 368-372(in Chinese).
    [20]
    NIU M C Y. Airframe structural design[M]. Hongkong: Conmilit Press Ltd., 2008: 417-420.
    [21]
    刘鸿文. 材料力学[M]. 北京: 高等教育出版社, 2017: 183-202.

    LIU H W. Mechanics of materials[M]. Beijing: Higher Education Press, 2017: 183-202(in Chinese).
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(11)  / Tables(5)

    Article Metrics

    Article views(264) PDF downloads(59) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return