Volume 49 Issue 4
Apr.  2023
Turn off MathJax
Article Contents
SUN H,YIN Q Z,WEI X H,et al. Research of single leg drop performance of new adaptive landing gear[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(4):990-998 (in Chinese) doi: 10.13700/j.bh.1001-5965.2021.0354
Citation: SUN H,YIN Q Z,WEI X H,et al. Research of single leg drop performance of new adaptive landing gear[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(4):990-998 (in Chinese) doi: 10.13700/j.bh.1001-5965.2021.0354

Research of single leg drop performance of new adaptive landing gear

doi: 10.13700/j.bh.1001-5965.2021.0354
Funds:  National Natural Science Foundation of China (51905264,52275114); China Postdoctoral Science Foundation (2021M691565); Nanjing University of Aeronautics and Astronautics Prospective Layout Special Found for Scientific Research; The Fundamental Research Funds for the Central Universities (NT2021004); Aeronautical Science Foundation of China (202000410520002); A Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions
More Information
  • Corresponding author: E-mail:wei_xiaohui@nuaa.edu.cn
  • Received Date: 29 Jun 2021
  • Accepted Date: 08 Aug 2021
  • Available Online: 02 Jun 2023
  • Publish Date: 09 Sep 2021
  • For the problem of inadequate terrain adaptability caused by the fixed structure of traditional helicopter landing gears, a new landing gear integrated for buffering actuation and walking with two stage buffering system was designed. The buffering function under multiple conditions was realized, the magnetorheological damper works to realize function in the conventional landing; the magnetorheological buffer and the oil-gas buffer work together to realize crashworthiness under the dangerous condition. A drop simulation model was established in the multibody dynamics software LMS Virtual.Lab Motion. The adaptive landing gear can adjust attitudes by two hydraulic actuating cylinders. The drop simulation analysis of the normal condition and the crash-resistant condition was carried out, and the buffer parameters were designed according to simulation data., the drop test was carried out under various conditions. Compared with the test and simulation results, the results show that the system’s buffering efficiency reached 85% and 75% respectively at two landing speeds. The adaptive landing gear can adjust to different attitudes actively, and it has good buffering performance at each attitude and a crashworthiness ability. The fact that the simulation and test findings were in agreement shows how well the multi-body dynamic model of the landing gear simulates the drop process.

     

  • loading
  • [1]
    王晓晖, 南英. 基于仿生的适于特殊地形的直升机起落架设计[J]. 飞机设计, 2014, 34(4): 46-48.

    WANG X H, NAN Y. Helicopter landing gear design for special terrain based on bionics[J]. Aircraft Design, 2014, 34(4): 46-48(in Chinese).
    [2]
    任佳, 王计真, 刘小川. 复杂地形条件下的着陆设计与控制仿真[J]. 航空科学技术, 2020, 31(9): 84-90.

    REN J, WANG J Z, LIU X C. Landing design and control simulation in complex terrain conditions[J]. Aeronautical Science and Technology, 2020, 31(9): 84-90(in Chinese).
    [3]
    STOLZ B, BRÖDERMANN T, CASTIELLO E, et al. An adaptive landing gear for extending the operational range of helicopters[C]//IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). Piscataway: IEEE Press, 2019: 1757-1763.
    [4]
    BOIX D M, GOH K, MCWHINNIE J. Modelling and control of helicopter robotic landing gear for uneven ground conditions[C]// Workshop on Research, Education and Development of Unmanned Aerial Systems (RED-UAS). Piscataway: IEEE Press, 2017: 60-65.
    [5]
    贾拴立. 直升机自适应性机器起落架设计与分析[D]. 哈尔滨: 哈尔滨工业大学, 2020: 20-25, 36-53.

    JIA S L. Design and analysis of adaptive and robotic landing gear of helicopter[D]. Harbin: Harbin Institute of Technology, 2020: 20-25, 36-53(in Chinese).
    [6]
    李国新. 舰载直升机自适应起落架关键技术研究[D]. 哈尔滨: 哈尔滨工业大学, 2019: 23-40.

    LI G X. Research on key technologies of adaptive landing gear of shipborne helicopters[D]. Harbin: Harbin Institute of Technology, 2019: 23-40(in Chinese).
    [7]
    田兴华, 高峰, 陈先宝, 等. 四足仿生机器人混联腿构型设计及比较[J]. 机械工程学报, 2013, 49(6): 81-88. doi: 10.3901/JME.2013.06.081

    TIAN X H, GAO F, CHEN X B, et al. Mechanism design and comparison for quadruped robot with parallel-serial leg[J]. Journal of Mechanical Engineering, 2013, 49(6): 81-88(in Chinese). doi: 10.3901/JME.2013.06.081
    [8]
    马登武, 叶文, 丁春全. 武装直升机抗坠毁技术研究[J]. 航空科学技术, 2005, 16(5): 33-36.

    MA D W, YE W, DING C Q. Study of the crash protection technology for the armed helicopter[J]. Aeronautical Science and Technology, 2005, 16(5): 33-36(in Chinese).
    [9]
    黎永平. 新型组合缓冲器设计及其耐坠毁性能研究[D]. 南京: 南京航空航天大学, 2018: 20-32.

    LI Y P. Design of a new type of composite shock absorber and study on its crashworthiness[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2018: 20-32(in Chinese).
    [10]
    雷波, 张明, 岳帅. 可重复使用运载器的耐坠毁缓冲装置的设计优化[J]. 宇航学报, 2019, 40(9): 996-1005.

    LEI B, ZHANG M, YUE S. Design and optimization of a crashworthy damper used for reusable launch vehicles[J]. Journal of Astronautics, 2019, 40(9): 996-1005(in Chinese).
    [11]
    梁东平, 柴洪友, 曾福明. 月球着陆器着陆腿非线性有限元建模与仿真[J]. 北京航空航天大学学报, 2013, 39(1): 11-15.

    LIANG D P, CHAI H Y, ZENG F M. Nonlinear finite element modeling and simulation for landing leg of lunar lander[J]. Journal of Beijing University of Aeronautics and Astronautics, 2013, 39(1): 11-15(in Chinese).
    [12]
    林轻, 聂宏, 陈金宝, 等. 月球着陆器软着陆冲击仿真[J]. 中国空间科学技术, 2011, 31(5): 70-75.

    LIN Q, NIE H, CHEN J B, et al. Soft landing impact simulation of lunar lander[J]. Chinese Space Science and Technology, 2011, 31(5): 70-75(in Chinese).
    [13]
    欧阳青, 李赵春, 郑佳佳, 等. 多阶并联式磁流变缓冲器可控性分析[J]. 浙江大学学报(工学版), 2017, 51(5): 961-968.

    OUYANG Q, LI Z C, ZHENG J J, et al. Controllability characteristics of magnetorheological damper with multi-stage parallel coil under impact load[J]. Journal of Zhejiang University (Engineering Science), 2017, 51(5): 961-968(in Chinese).
    [14]
    王加刚, 余永刚, 廖昌荣, 等. 考虑边界滑移和惯性效应的磁流变液缓冲器特性分析[J]. 兵工学报, 2018, 39(4): 672-680.

    WANG J G, YU Y G, LIAO C R, et al. Characteristic analysis of magneto-rheological fluid damper considering slip boundary and inertial effect[J]. Acta Armamentarii, 2018, 39(4): 672-680(in Chinese).
    [15]
    刘学翱, 吴宏宇, 王春洁, 等. 着陆器变阻尼缓冲器性能分析及参数优化[J]. 北京航空航天大学学报, 2018, 44(10): 2149-2155.

    LIU X A, WU H Y, WANG C J, et al. Performance analysis and parameter optimization of lander with variable damping buffer[J]. Journal of Beijing University of Aeronautics and Astronautics, 2018, 44(10): 2149-2155(in Chinese).
    [16]
    陈金宝, 钱佳程, 贾山, 等. 新型多级铝蜂窝缓冲器的缓冲性能研究与分析[J]. 西北工业大学学报, 2020, 38(S1): 1-6.

    CHEN J B, QIAN J C, JIA S, et al. Research and analysis of cushioning performance of new multistage aluminum honeycomb buffer[J]. Journal of Northwestern Polytechnical University, 2020, 38(S1): 1-6(in Chinese).
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)  / Tables(2)

    Article Metrics

    Article views(432) PDF downloads(41) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return