Volume 49 Issue 4
Apr.  2023
Turn off MathJax
Article Contents
HAN Y F,HU X S,GAO Y,et al. Comparison of turbulence models for unsteady flow simulation in a long and narrow cabin[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(4):957-964 (in Chinese) doi: 10.13700/j.bh.1001-5965.2021.0335
Citation: HAN Y F,HU X S,GAO Y,et al. Comparison of turbulence models for unsteady flow simulation in a long and narrow cabin[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(4):957-964 (in Chinese) doi: 10.13700/j.bh.1001-5965.2021.0335

Comparison of turbulence models for unsteady flow simulation in a long and narrow cabin

doi: 10.13700/j.bh.1001-5965.2021.0335
Funds:  The Fundamental Research Funds for the Central Universities (2232019D3-28)
More Information
  • Corresponding author: E-mail:zhangyongzhi@dhu.edu.cn
  • Received Date: 18 Jun 2021
  • Accepted Date: 24 Sep 2021
  • Available Online: 02 Jun 2023
  • Publish Date: 26 Oct 2021
  • Aiming at the problem of turbulence model selection for unsteady flow simulation in a long and narrow enclosed cabin, this study uses an aircraft cabin as a typical environment and uses the heat shrinkage ratio method based on similar criteria to build a simplified experimental platform. The experimental results are compared and analyzed with the numerical simulation results obtained by the three turbulence models of RNG k-ε, DES and LES, and the appropriate turbulence model in the study of unsteady flow characteristics in the long and narrow enclosed cabin is evaluated. The results demonstrate that the RNG k-ε and DES models are capable of qualitatively describing the flow trend, but the LES model is more accurate in capturing the unpredictability and instability of the flow field, and its flow field structure is more in line with the experimental findings. Therefore, the LES model can more truly reflect the unsteady flow of the long and narrow enclosed cabin.

     

  • loading
  • [1]
    刘鹤. 中英两国民航产业政策比较分析[J]. 民航管理, 2019(9): 14-16.

    LIU H. A comparative analysis of civil aviation industry policies between China and Britain[J]. Civil Aviation Management, 2019(9): 14-16(in Chinese).
    [2]
    庞丽萍, 巩萌萌, 王浚, 等. 基于人体热调节模型的民机座舱热舒适性分析[J]. 北京航空航天大学学报, 2012, 38(2): 166-169. doi: 10.13700/j.bh.1001-5965.2012.02.019

    PANG L P, GONG M M, WANG J, et al. Aircraft cabin comfort analysis with human thermoregulation model[J]. Journal of Beijing University of Aeronautics and Astronautics, 2012, 38(2): 166-169(in Chinese). doi: 10.13700/j.bh.1001-5965.2012.02.019
    [3]
    LI J Y, LIU J J, PEI J J, et al. Experimental study of human thermal plumes in a small space via large-scale TR PIV system[J]. International Journal of Heat and Mass Transfer, 2018, 127: 970-980. doi: 10.1016/j.ijheatmasstransfer.2018.07.138
    [4]
    ZHANG Y Z, LI J Y, LIU J J. Experimental study of the impact of passenger behavior on the aircraft cabin environment[J]. Science and Technology for the Built Environment, 2021, 27(4): 427-435. doi: 10.1080/23744731.2020.1849795
    [5]
    MAHMOUD S, BENNETT J S, HOSNI M H, et al. Comparison of pathogens dispersion in an aircraft cabin using gas injection source versus a coughing manikin[C]//Proceedings of ASME 2020 Fluids Engineering Division Summer Meeting. New York: ASME, 2020: V001 T 01A013.
    [6]
    CAO X D, LIU J J, PEI J J, et al. 2D-PIV measurement of aircraft cabin air distribution with a high spatial resolution[J]. Building and Environment, 2014, 82: 9-19. doi: 10.1016/j.buildenv.2014.07.027
    [7]
    LIU W, DUAN R, CHEN C, et al. Inverse design of the thermal environment in an airliner cabin by use of the CFD-based adjoint method[J]. Energy and Buildings, 2015, 104: 147-155. doi: 10.1016/j.enbuild.2015.07.011
    [8]
    KIM J Y, KIM K Y. Experimental and numerical analyses of train-induced unsteady tunnel flow in subway[J]. Tunnelling and Underground Space Technology Incorporating Trenchless Technology Research, 2007, 22(2): 166-172.
    [9]
    朱学良. 客舱内自然对流运动对流场影响的实验研究[D]. 天津: 天津大学, 2016.

    ZHU X L. The experimental research about the influence of natural convection on the flow field in the cabin mockup[D]. Tianjin: Tianjin University, 2016(in Chinese).
    [10]
    LIU W, WEN J Z, LIN C H, et al. Evaluation of various categories of turbulence models for predicting air distribution in an airliner cabin[J]. Building and Environment, 2013, 65: 118-131. doi: 10.1016/j.buildenv.2013.03.018
    [11]
    LIN C H, HORSTMAN R H, AHLERS M F, et al. Numerical simulation of airflow and airborne pathogen transport in aircraft cabins- Part Ⅰ: Numerical simulation of the flow field[J]. ASHRAE Transactions, 2005, 111(1): 755-763.
    [12]
    EBRAHIMI K, ZHENG Z C, HOSNI M H. LES and RANS simulation of turbulent airflow and tracer gas injection in a generic aircraft cabin model[C]//Proceedings of the Roceeding of ASME-joint Us-european Fluids Engineering Summer Meeting & International Conference on Nanochannels. New York: ASME, 2010: 227-240.
    [13]
    胡滋艳. 基于地铁车厢内流动结构优化的数值模拟研究[D]. 上海: 东华大学, 2019.

    HU Z Y. Numerical simulation research on flow structure optimization in subway cabin[D]. Shanghai: Donghua University, 2019(in Chinese).
    [14]
    TANABE S, ARENS E A, BAUMAN F, et al. Evaluating thermal environments by using a thermal manikin with controlled skin surface temperature[J]. ASHRAE Transactions, 1994, 100(1): 39-48.
    [15]
    中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. 热环境人类工效学 代谢率的测定: GB/T 18048—2008[S]. 北京: 中国标准出版社, 2009.

    General Administration of Quality Supervision, Inspection and Quarantine of the People’s Replublic of China, Standardization Administration of the People’s Republic of China. Ergonomics of the thermal environment-Determination of metabolic rate: GB/T 18048—2008[S]. Beijing: Standards Press of China, 2009(in Chinese).
    [16]
    YAN Y H, LI X D, TU J Y. Effects of passenger thermal plume on the transport and distribution characteristics of airborne particles in an airliner cabin section[J]. Science and Technology for the Built Environment, 2016, 22(2): 153-163. doi: 10.1080/23744731.2015.1090254
    [17]
    ZHANG T, CHEN Q. Novel air distribution systems for commercial aircraft cabins[J]. Building and Environment, 2007, 42(4): 1675-1684. doi: 10.1016/j.buildenv.2006.02.014
    [18]
    ZHANG Z, CHEN X, MAZUMDAR S, et al. Experimental and numerical investigation of airflow and contaminant transport in an airliner cabin mockup[J]. Building and Environment, 2009, 44(1): 85-94. doi: 10.1016/j.buildenv.2008.01.012
    [19]
    ZHANG Z, ZHANG W, ZHAI J Z, et al. Evaluation of various turbulence models in predicting airflow and turbulence in enclosed environments by CFD. Part 2: Comparison with experimental data from literature[J]. HVAC & R Research, 2007, 13(6): 871-886.
    [20]
    ZHANG T T, LEE K, CHEN Q Y. A simplified approach to describe complex diffusers in displacement ventilation for CFD simulations[J]. Indoor Air, 2009, 19(3): 255-267. doi: 10.1111/j.1600-0668.2009.00590.x
    [21]
    YANG C W, ZHANG X W, CAO X D, et al. Numerical simulations of the instantaneous flow fields in a generic aircraft cabin with various categories turbulence models[J]. Procedia Engineering, 2015, 121: 1827-1835. doi: 10.1016/j.proeng.2015.09.163
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)  / Tables(2)

    Article Metrics

    Article views(158) PDF downloads(8) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return