Volume 49 Issue 4
Apr.  2023
Turn off MathJax
Article Contents
YUAN M Y,ZHOU J H,HAO Y,et al. Design of contactless power supply system for stratospheric airship anemometer[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(4):972-980 (in Chinese) doi: 10.13700/j.bh.1001-5965.2021.0344
Citation: YUAN M Y,ZHOU J H,HAO Y,et al. Design of contactless power supply system for stratospheric airship anemometer[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(4):972-980 (in Chinese) doi: 10.13700/j.bh.1001-5965.2021.0344

Design of contactless power supply system for stratospheric airship anemometer

doi: 10.13700/j.bh.1001-5965.2021.0344
Funds:  National Natural Science Foundation of China (61733017)
More Information
  • Corresponding author: E-mail:zhoufma@aoe.ac.cn
  • Received Date: 23 Jun 2021
  • Accepted Date: 29 Oct 2021
  • Available Online: 02 Jun 2023
  • Publish Date: 17 Nov 2021
  • In view of the deficiency of the power supply mode for the electric slip ring of the stratospheric airship anemometer, a contactless power supply system of the airship anemometer based on DSP control is designed. Based on the principle of electromagnetic induction, the composition of contactless power supply system is defined; by establishing the equivalent circuit model of the system, the factors affecting the transmission efficiency and power of the system are analyzed; combined with the structure and application background of the boat borne anemometer, the nested loosely coupled coil is designed with the help of ANSYS Maxwell electromagnetic simulation software. Finally, the main circuit of the system is simulated, and the primary and secondary circuits based on DSP are built to verify the working characteristics of the system. Simulation and experimental results show that the designed contactless power supply system can accomplish good wireless energy transmission, and can supply power for stratospheric shipboard anemometer after depressurization.

     

  • loading
  • [1]
    苗景刚, 王帆, 周江华, 等. 风场环境下平流层飞艇运动建模[J]. 系统科学与数学, 2013, 33(6): 685-694.

    MIAO J G, WANG F, ZHOU J H, et al. Motion modeling of stratospheric airship in wind field[J]. Journal of Systems Science and Mathematical Sciences, 2013, 33(6): 685-694(in Chinese).
    [2]
    周江华, 苗景刚. 高空驻空型飞行器风速风向实时测量方法与装置: CN101750514A[P]. 2010-06-23.

    ZHOU J H, MIAO J G. Method and device for real-time measurement of wind speed and direction of high-altitude airborne aircraft: CN101750514A[P]. 2010-06-23(in Chinese).
    [3]
    周江华, 苗景刚, 栗颖思. 一种用于高空低速飞行器风速风向实时测量装置: CN105181995B[P]. 2018-09-11.

    ZHOU J H, MIAO J G, LI Y S. Real-time measuring device for wind speed and direction of high-altitude low-speed aircraft: CN105181995B[P]. 2018-09-11(in Chinese).
    [4]
    李欣, 李若琼. 基于ICPT的非接触式牵引供电系统研究综述[J]. 高压电器, 2019, 55(7): 1-9.

    LI X, LI R Q. Review of contactless traction power supply system based on ICPT[J]. High Voltage Apparatus, 2019, 55(7): 1-9(in Chinese).
    [5]
    张平. 基于电场感应的无线电能传输系统的研究[J]. 机电设备, 2016, 33(6): 48-52. doi: 10.16443/j.cnki.31-1420.2016.06.012

    ZHANG P. Research on electric-field-induction based wireless power transmission system[J]. Mechanical and Electrical Equipment, 2016, 33(6): 48-52(in Chinese). doi: 10.16443/j.cnki.31-1420.2016.06.012
    [6]
    LIU C, HU A P, NAIR N K C. Coupling study of a rotary capacitive power transfer system[C]//IEEE International Conference on Industrial Technology. Piscataway: IEEE Press, 2009: 1-6.
    [7]
    冯桂荣. 微波无线能量传输系统的研究[D]. 西安: 西安电子科技大学, 2014.

    FENG G R. The research of microwave power transmission system[D]. Xi’an: Xidian University, 2014(in Chinese).
    [8]
    李向阳, 吴世臣, 李钟晓. 激光无线能量传输技术应用及其发展趋势[J]. 航天器工程, 2015, 24(1): 1-7. doi: 10.3969/j.issn.1673-8748.2015.01.001

    LI X Y, WU S C, LI Z X. Laser wireless power transmission technology and its development trend[J]. Spacecraft Engineering, 2015, 24(1): 1-7(in Chinese). doi: 10.3969/j.issn.1673-8748.2015.01.001
    [9]
    BOYS J T, COVIC G A, ELLIOTT G A J. Pick-up transformer for ICPT applications[J]. Electronics Letters, 2002, 38(21): 1276-1278. doi: 10.1049/el:20020874
    [10]
    BUDHIA M, COVIC G A, BOYS J T. A new IPT magnetic coupler for electric vehicle charging systems[C]//36th Annual Conference on IEEE Industrial Electronics Society. Piscataway: IEEE Press, 2010: 2487-2492.
    [11]
    KURS A, KARALIS A, MOFFATT R, et al. Wireless power transfer via strongly coupled magnetic resonances[J]. Science, 2007, 317(5834): 83-86. doi: 10.1126/science.1143254
    [12]
    田子建, 杜欣欣, 樊京, 等. 磁耦合谐振无线输电系统不同拓扑结构的分析[J]. 电气工程学报, 2015, 10(6): 47-57.

    TIAN Z J, DU X X, FAN J, et al. Analysis on different topology structures in magnetic coupling resonant wireless power transmission system[J]. Journal of Electrical Engineering, 2015, 10(6): 47-57(in Chinese).
    [13]
    孙勇, 楼佩煌, 吴亮亮. 非接触供电系统的应用平台研究[J]. 工业控制计算机, 2009, 22(3): 86-88.

    SUN Y, LOU P H, WU L L. Research on application platform of contactless supply system[J]. Industrial Control Computer, 2009, 22(3): 86-88(in Chinese).
    [14]
    马健鹏. 井下无线供电与无线通信智能短节的研制[D]. 东营: 中国石油大学(华东), 2018.

    MA J P. Development of downhole wireless power supply and wireless communication intelligent short section[D]. Dongying: China University of Petroleum (Huadong), 2018(in Chinese).
    [15]
    李砚玲, 孙跃, 戴欣. π型感应电能传输系统的鲁棒稳定性分析[J]. 湖南大学学报(自然科学版), 2011, 38(10): 50-55.

    LI Y L, SUN Y, DAI X. Robust stability analysis of π-type inductive power transfer system[J]. Journal of Hunan University (Natural Sciences), 2011, 38(10): 50-55(in Chinese).
    [16]
    王帅, 薛寒寒. 小功率磁耦合谐振式无线供电系统的研究[J]. 电子技术应用, 2020, 46(2): 109-113. doi: 10.16157/j.issn.0258-7998.191239

    WANG S, XUE H H. Research of miniwatt magnetically coupled resonant wireless power supply system[J]. Application of Electronic Technique, 2020, 46(2): 109-113(in Chinese). doi: 10.16157/j.issn.0258-7998.191239
    [17]
    吴二雷. 基于磁耦合谐振式无线供电系统的研究与设计[D]. 沈阳: 东北大学, 2014.

    WU E L. Research and design of wireless power supply system based on magnetic coupling resonant[D]. Shenyang: Northeastern University, 2014(in Chinese).
    [18]
    倪新东, 江兵, 朱华. 基于PCB的非接触式供电系统效率因素分析[J]. 电子技术, 2013, 42(3): 18-20.

    NI X D, JIANG B, ZHU H. Efficiency factor analysis of PCB-based contactless power supply system[J]. Electronic Technology, 2013, 42(3): 18-20(in Chinese).
    [19]
    高键鑫, 吴旭升, 高嵬, 等. 电磁感应式非接触电能传输技术研究综述[J]. 电源学报, 2017, 15(2): 166-178. doi: 10.13234/j.issn.2095-2805.2017.2.166

    GAO J X, WU X S, GAO W, et al. Review on inductive contactless power transfer technology[J]. Journal of Power Supply, 2017, 15(2): 166-178(in Chinese). doi: 10.13234/j.issn.2095-2805.2017.2.166
    [20]
    范明. 谐振耦合式电能无线传输系统研究[D]. 太原: 太原理工大学, 2012.

    FAN M. Research on wireless power transfer system based on resonant coupling[D]. Taiyuan: Taiyuan University of Technology, 2012(in Chinese).
    [21]
    王智慧, 孙跃, 戴欣, 等. DC-AC型非接触电能传输系统变换器设计[J]. 重庆大学学报, 2011, 34(2): 38-43. doi: 10.11835/j.issn.1000-582X.2011.02.007

    WANG Z H, SUN Y, DAI X, et al. Design of converter of DC-AC type contactless power transfer system[J]. Journal of Chongqing University, 2011, 34(2): 38-43(in Chinese). doi: 10.11835/j.issn.1000-582X.2011.02.007
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(17)  / Tables(3)

    Article Metrics

    Article views(230) PDF downloads(17) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return